Loading [MathJax]/jax/output/SVG/jax.js
Advanced Search+
Jiansheng YAO (姚建生), Yingkui ZHAO (赵英奎), Difa YE (叶地发), Yi LI (李毅), Lihui CHAI (柴立晖), Jicheng SUN (孙继承). A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability[J]. Plasma Science and Technology, 2021, 23(12): 125301. DOI: 10.1088/2058-6272/ac11b0
Citation: Jiansheng YAO (姚建生), Yingkui ZHAO (赵英奎), Difa YE (叶地发), Yi LI (李毅), Lihui CHAI (柴立晖), Jicheng SUN (孙继承). A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability[J]. Plasma Science and Technology, 2021, 23(12): 125301. DOI: 10.1088/2058-6272/ac11b0

A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11822401, 41674177 and 41874208).
More Information
  • Received Date: April 04, 2021
  • Revised Date: July 04, 2021
  • Accepted Date: July 05, 2021
  • Most protons in the solar wind belong to one of two different populations, the less dense beam protons and the denser core protons. The beam protons, with a velocity of (1–2) VA (VA is the local Alfvén speed), always drift relative to the core protons; this kind of distribution is unstable and stimulates several kinds of wave mode. In this study, using a 2D hybrid simulation model, we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized, and eventually become right-handed and circularly polarized. Given that linearly polarized waves are a superposition of left-handed and right-handed waves, cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly. The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower, resulting in more dramatic perpendicular heating of beam protons, whereas the situation is reversed when the beam relative density is larger.
  • [1]
    Feldman W C et al 1973 J. Geophys. Res. 78 2017
    [2]
    Feldman W C et al 1974 Rev. Geophys. 12 715
    [3]
    Goodrich C C and Lazarus A J 1976 J. Geophys. Res. 81 2750
    [4]
    Marsch E et al 1982 J. Geophys. Res.: Space Phys. 87 52
    [5]
    Goldstein B E et al 2000 Geophys. Res. Lett. 27 53
    [6]
    Marsch E, Ao X Z and Tu C Y 2004 J. Geophys. Res.: Space Phys. 109 A04102
    [7]
    Jannet G et al 2021 J. Geophys. Res. 126 e2020JA028543
    [8]
    Horbury T S, Matteini L and Stansby D 2018 Mon. Not. R.Astron. Soc. 478 1980
    [9]
    Daniele T et al 2021 ApJL 912 L21
    [10]
    Montgomery M D et al 1976 J. Geophys. Res. 81 2743
    [11]
    Gary S P 1991 Space Sci. Rev. 56 373F27
    [12]
    Daughton W and Gary S P 1998 J. Geophys. Res.: Space Phys.103 20613
    [13]
    Gary S P et al 1993 Geophys. Res. Lett. 20 1767
    [14]
    Gary S P, McKean M E and Winske D 1993 J. Geophys. Res.:Space Phys. 98 3963
    [15]
    Lu Q M, Du A M and Li X 2009 Phys. Plasmas 16 042901
    [16]
    Lu Q M and Wang S 2006 J. Geophys. Res. 111 A05204
    [17]
    Wang J J, Gary S P and Liewer P C 1999 J. Geophys. Res.:Space Phys. 104 24807
    [18]
    Daughton W, Gary S P and Winske D 1999 J. Geophys. Res.:Space Phys. 104 4657
    [19]
    Gao X L et al 2013 Astrophys. J. 764 71
    [20]
    Xiang L, Wu D J and Chen L 2018 Astrophys. J. 869 64
    [21]
    Xiang L, Wu D J and Chen L 2018 Astrophys. J. 857 108
    [22]
    Yao J S et al 2020 Phys. Plasmas 27 022901
    [23]
    Yao J S et al 2020 Phys. Plasmas 27 012901
    [24]
    Lu Q M and Chen L 2009 Astrophys. J. 704 743
    [25]
    Lu Q M and Li X 2007 Phys. Plasmas 14 042303
    [26]
    Gao X L et al 2012 Phys. Plasmas 19 032901
    [27]
    Yao J S et al 2021 Phys. Plasmas 28 012903
    [28]
    Winske D 1985 Space Sci. Rev. 42 53
    [29]
    Quest K B 1988 J. Geophys. Res.: Space Phys. 93 9649
    [30]
    Lu Q M and Wang S 2005 Geophys. Res. Lett. 32 L03111
  • Related Articles

    [1]Huajian JI, Hongming ZHANG, Bo LYU, Cheonho BAE, Liang HE, Zichao LIN, Xianghui YIN, Yongcai SHEN, Shuyu DAI. Wavelength calibration and spectral analysis of vacuum ultraviolet spectroscopy in EAST[J]. Plasma Science and Technology, 2024, 26(8): 085105. DOI: 10.1088/2058-6272/ad4f24
    [2]Hongming ZHANG (张洪明), Bo LYU (吕波), Liang HE (何梁), Yongcai SHEN (沈永才), Jun CHEN (陈俊), Jia FU (符佳), Bin BIN (宾斌), Xunyu WANG (王勋禺), Fudi WANG (王福地), Yingying LI (李颖颖), Ling ZHANG (张凌), Bing LIU (刘兵). Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak[J]. Plasma Science and Technology, 2020, 22(8): 84001-084001. DOI: 10.1088/2058-6272/ab81a4
    [3]S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846
    [4]Tadatake SATO, Kenichi TASHIRO, Yoshizo KAWAGUCHI, Hideki OHMURA, Haruhisa AKIYAMA. Investigation of the factors affecting the limit of detection of laser-induced breakdown spectroscopy for surface inspection[J]. Plasma Science and Technology, 2019, 21(3): 34021-034021. DOI: 10.1088/2058-6272/aaf5ef
    [5]Xinshuai YANG (杨新帅), Ruiji HU (胡睿佶), Jun CHEN (陈俊), Fudi WANG (王福地), Jia FU (符佳), Yingying LI (李颖颖), Hongming ZHANG (张洪明), Yongcai SHEN (沈永才), Xianghui YIN (尹相辉), Bo LYU (吕波), EAST team. Measurement of impurity lines with two- crystal x-ray spectrometers on EAST[J]. Plasma Science and Technology, 2018, 20(12): 124001. DOI: 10.1088/2058-6272/aad177
    [6]XU Yijun (徐轶君), WU Xuemei (吴雪梅), YE Chao (叶超). Effect of Low-Frequency Power on Etching Characteristics of 6H-SiC in C 4 F 8 /Ar Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2013, 15(10): 1066-1070. DOI: 10.1088/1009-0630/15/10/19
    [7]LU Bo (吕波), SHI Yuejiang (石跃江), WANG Fudi (王福地), WAN Baonian (万宝年), Manfred BITTER, Kenneth W. HILL, Sang-gon LEE, LI Yingying (李颖颖), FU Jia (符佳), ZHANG Jizong (张继宗), XU Jingcui (徐经翠), SHEN Yongcai. Test of a High Throughput Detector on the X-ray Crystal Spectrometer of the EAST[J]. Plasma Science and Technology, 2013, 15(2): 97-100. DOI: 10.1088/1009-0630/15/2/03
    [8]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [9]YAO Risheng (姚日生), LI Manman (李曼曼), DENG Shengsong (邓胜松), HU Huajia (胡华佳), WANG Huai (王淮), LI Fenghe (李凤和). Mutagenesis of Trichoderma viride by Ultraviolet and Plasma[J]. Plasma Science and Technology, 2012, 14(4): 353-356. DOI: 10.1088/1009-0630/14/4/16
    [10]H. Martínez, O. Flores, J. C. Poveda, B. Campillo. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions[J]. Plasma Science and Technology, 2012, 14(4): 303-311. DOI: 10.1088/1009-0630/14/4/07
  • Cited by

    Periodical cited type(4)

    1. Joo, Y.-H., Choi, J.-W., Hou, B. et al. Etching characteristics and surface modification of InGaSnO thin films under Cl2/Ar plasma. Plasma Science and Technology, 2023, 25(10): 105502. DOI:10.1088/2058-6272/acd588
    2. Li, Z., Li, L., Zhang, G. et al. AZO work function enhanced by oxygen plasma immersion ion implantation. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.112038
    3. Petrova, D., Napoleonov, B., Minh, C.N.H. et al. The Effect of Post Deposition Treatment on Properties of ALD Al-Doped ZnO Films. Nanomaterials, 2023, 13(5): 800. DOI:10.3390/nano13050800
    4. Xu, K., Li, P., Wang, S. et al. Passivation of oxygen vacancy defects in conductive ZnO nanoparticles via low-temperature annealing in NF3. Journal of Physics D: Applied Physics, 2023, 56(8): 085301. DOI:10.1088/1361-6463/acb4a5

    Other cited types(0)

Catalog

    Article views (127) PDF downloads (264) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return