Advanced Search+
Chong NIU (牛冲), Xian MENG (孟显), Heji HUANG (黄河激), Tao ZHU (朱涛), Surong SUN (孙素蓉), Haixing WANG (王海兴). Numerical simulation of the effects of protrusion on DC arc anode attachment[J]. Plasma Science and Technology, 2021, 23(10): 104006. DOI: 10.1088/2058-6272/ac125e
Citation: Chong NIU (牛冲), Xian MENG (孟显), Heji HUANG (黄河激), Tao ZHU (朱涛), Surong SUN (孙素蓉), Haixing WANG (王海兴). Numerical simulation of the effects of protrusion on DC arc anode attachment[J]. Plasma Science and Technology, 2021, 23(10): 104006. DOI: 10.1088/2058-6272/ac125e

Numerical simulation of the effects of protrusion on DC arc anode attachment

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11735004 and 12005010).
More Information
  • Received Date: March 19, 2021
  • Revised Date: July 05, 2021
  • Accepted Date: July 06, 2021
  • The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation. A three-dimensional thermodynamic and chemical non-equilibrium model is used to numerically simulate the effect of artificially assumed surface protrusions on the arc anode attachment. The numerical simulation results show that the arc deflects toward the protrusions on the anode and attaches to them in a constricted mode, resulting in an increase in the temperature of the arc attachment region. The analysis shows that the presence of protrusion on the anode surface changes the electric field distribution, intensifies the degree of thermodynamic and chemical non-equilibrium in its vicinity, further influences the chemical kinetic process of the plasma around it, which is the main reason for the deflection of the arc toward the protrusions and the arc anode attachment in a constricted mode. In order to verify the numerical simulation results, verification experiments are also performed using similar size scale anode protrusion, and the results showed that the presence of protrusion can indeed cause the deflection of the arc and even cause the ablation of the protrusion.
  • [1]
    Pivirotto T J, King D Q and Deininger W D 1987 Long duration test of a 30-kW class thermal arcjet engine 23rd Joint Propulsion Conf. (San Diego: AIAA) (https://doi.org/10.2514/6.1987-1947)
    [2]
    Polk J E and Goodfellow K D 1992 Results of a 1462 h ammonia arcjet endurance test 28th Joint Propulsion Conf.and Exhibit (Nashville: AIAA) (https://doi.org/10.2514/6.1992-3833)
    [3]
    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
    [4]
    Trelles J P 2013 Plasma Sources Sci. Technol. 22 025017
    [5]
    Trelles J P 2014 Plasma Sources Sci. Technol. 23 054002
    [6]
    Heberlein J, Mentel J and Pfender E 2010 J. Phys. D: Appl.Phys. 43 023001
    [7]
    Mentel J and Heberlein J V 2010 J. Phys. D: Appl. Phys. 43 023002
    [8]
    Liang F et al 2017 Carbon 117 100
    [9]
    Liang F et al 2016 J. Phys. D: Appl. Phys. 49 125201
    [10]
    Mesyats G A and Uimanov I V 2017 IEEE Trans. Plasma Sci.45 2087
    [11]
    Zhang X et al 2019 J. Phys. D: Appl. Phys. 52 035204
    [12]
    Tsventoukh M M 2018 Phys. Plasmas 25 053504
    [13]
    Beilis I I 2019 IEEE Trans. Plasma Sci. 47 3412
    [14]
    Beilis I 2020 Plasma and Spot Phenomena in Electrical Arcs (Berlin: Springer) (https://doi.org/10.1007/978-3-030-44747-2)
    [15]
    Benilov M S 2020 J. Phys. D: Appl. Phys. 53 013002
    [16]
    Yang G and Heberlein J 2007 Plasma Sources Sci. Technol.16 529
    [17]
    Chen X and Li H P 2001 Int. J. Heat Mass Transfer 44 2541
    [18]
    Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
    [19]
    Murphy A B 2015 Plasma Chem. Plasma Process. 35 471
    [20]
    Trelles J P 2020 Plasma Chem. Plasma Process. 40 727
    [21]
    Murphy A B and Uhrlandt D 2018 Plasma Sources Sci.Technol. 27 063001
    [22]
    Baeva M and Uhrlandt D 2017 Plasma Phys. Technol. 4 203
    [23]
    Baeva M et al 2016 J. Phys. D: Appl. Phys. 49 245205
    [24]
    Li H P and Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010
    [25]
    Li H P, Ostrikov K and Sun W T 2018 Phys. Rep. 770 1
    [26]
    Guo H et al 2018 Sci. Rep. 8 4783
    [27]
    Li H P, Zhang X N and Xia W D 2013 Phys. Plasmas 20 033509
    [28]
    Watanabe T and Sugimoto N 2004 Thin Solid Films 457 201
    [29]
    Watanabe T, Atsuchi N and Shigeta M 2007 Thin Solid Films 515 4209
    [30]
    Watanabe T et al 1996 J. Mater. Res. 11 2598
    [31]
    Sun S R et al 2020 J. Phys. D: Appl. Phys. 53 305202
    [32]
    Wang H X et al 2020 J. Phys. D: Appl. Phys. 53 505205
    [33]
    Sun S R, Wang H X and Zhu T 2020 Contrib. Plasma Phys. 60 e201900094
    [34]
    Sun J H et al 2020 Plasma Chem. Plasma Process. 40 1383
    [35]
    Sun S R et al 2019 Plasma Chem. Plasma Process. 40 261
    [36]
    Yang G and Heberlein J V 2007 J. Phys. D: Appl. Phys.40 5649
    [37]
    Ramshaw J D and Chang C H 1996 Phys. Rev. E 53 6382
    [38]
    Ramshaw J D and Chang C H 1991 Plasma Chem. Plasma Process. 11 395
    [39]
    Ramshaw J D 1990 J. Non-Equilib. Thermodyn. 15 295
    [40]
    Zhu T et al 2019 Plasma Sci. Technol. 21 125406
    [41]
    Wang H X et al 2017 Plasma Chem. Plasma Process. 37 877
    [42]
    Baeva M et al 2012 Plasma Sources Sci. Technol. 21 055027
    [43]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [44]
    Jonkers J et al 2003 Plasma Sources Sci. Technol. 12 464
    [45]
    Cunningham A J, O’Malley T F and Hobson R M 1981 J. Phys. B: At. Mol. Phys. 14 773
    [46]
    Bultel A et al 2002 Phys. Rev. E 65 046406
    [47]
    Lymberopoulos D P and Economou D J 1993 J. Appl. Phys.73 3668
    [48]
    Kabouzi Y et al 2007 Phys. Rev. E 75 016402
    [49]
    Devoto R S 1973 Phys. Fluids 16 616
    [50]
    Fridman A et al 2007 Transport Phenomena in Plasma (London: Elsevier)
    [51]
    Konishi K et al 2017 Weld. World 61 197
    [52]
    Chen S Q and Wang H X 2012 Chin. Phys. Lett. 29 025202
    [53]
    Wang H X, Sun S R and Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese)
    [54]
    Wang H X, Chen S Q and Chen X 2012 J. Phys. D: Appl.Phys. 45 165202
    [55]
    Aziz R A and Slaman M J 1990 J. Chem. Phys. 92 1030
    [56]
    Aubreton J, Bonnefoi C and Mexmain J M 1986 Rev. Phys.Appl. 21 365
    [57]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
    [58]
    Sanders N A and Pfender E 1984 J. Appl. Phys. 55 714
    [59]
    Jenista J, Heberlein V R and Pfender E 1997 IEEE Trans.Plasma Sci. 25 883
    [60]
    Li H P and Chen X 2001 J. Phys. D: Appl. Phys. 34 L99
    [61]
    Trelles J P, Heberlein J V R and Pfender E 2007 J. Phys. D:Appl. Phys. 40 5937
    [62]
    Huang R Z et al 2011 IEEE Trans. Plasma Sci. 39 1974
    [63]
    Cressault Y et al 2013 J. Phys. D: Appl. Phys. 46 415207
    [64]
    Comsol 2020 COMSOL Multiphysics v. 5.2a (www.comsol.com)
    [65]
    Sanders N et al 1982 J. Appl. Phys. 53 4136
    [66]
    Ye R B, Murphy A B and Takamasa I 2007 Plasma Chem.Plasma Process. 27 189
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436
    [6]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [7]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (105) PDF downloads (108) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return