Advanced Search+
Chong NIU (牛冲), Xian MENG (孟显), Heji HUANG (黄河激), Tao ZHU (朱涛), Surong SUN (孙素蓉), Haixing WANG (王海兴). Numerical simulation of the effects of protrusion on DC arc anode attachment[J]. Plasma Science and Technology, 2021, 23(10): 104006. DOI: 10.1088/2058-6272/ac125e
Citation: Chong NIU (牛冲), Xian MENG (孟显), Heji HUANG (黄河激), Tao ZHU (朱涛), Surong SUN (孙素蓉), Haixing WANG (王海兴). Numerical simulation of the effects of protrusion on DC arc anode attachment[J]. Plasma Science and Technology, 2021, 23(10): 104006. DOI: 10.1088/2058-6272/ac125e

Numerical simulation of the effects of protrusion on DC arc anode attachment

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11735004 and 12005010).
More Information
  • Received Date: March 19, 2021
  • Revised Date: July 05, 2021
  • Accepted Date: July 06, 2021
  • The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation. A three-dimensional thermodynamic and chemical non-equilibrium model is used to numerically simulate the effect of artificially assumed surface protrusions on the arc anode attachment. The numerical simulation results show that the arc deflects toward the protrusions on the anode and attaches to them in a constricted mode, resulting in an increase in the temperature of the arc attachment region. The analysis shows that the presence of protrusion on the anode surface changes the electric field distribution, intensifies the degree of thermodynamic and chemical non-equilibrium in its vicinity, further influences the chemical kinetic process of the plasma around it, which is the main reason for the deflection of the arc toward the protrusions and the arc anode attachment in a constricted mode. In order to verify the numerical simulation results, verification experiments are also performed using similar size scale anode protrusion, and the results showed that the presence of protrusion can indeed cause the deflection of the arc and even cause the ablation of the protrusion.
  • [1]
    Pivirotto T J, King D Q and Deininger W D 1987 Long duration test of a 30-kW class thermal arcjet engine 23rd Joint Propulsion Conf. (San Diego: AIAA) (https://doi.org/10.2514/6.1987-1947)
    [2]
    Polk J E and Goodfellow K D 1992 Results of a 1462 h ammonia arcjet endurance test 28th Joint Propulsion Conf.and Exhibit (Nashville: AIAA) (https://doi.org/10.2514/6.1992-3833)
    [3]
    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
    [4]
    Trelles J P 2013 Plasma Sources Sci. Technol. 22 025017
    [5]
    Trelles J P 2014 Plasma Sources Sci. Technol. 23 054002
    [6]
    Heberlein J, Mentel J and Pfender E 2010 J. Phys. D: Appl.Phys. 43 023001
    [7]
    Mentel J and Heberlein J V 2010 J. Phys. D: Appl. Phys. 43 023002
    [8]
    Liang F et al 2017 Carbon 117 100
    [9]
    Liang F et al 2016 J. Phys. D: Appl. Phys. 49 125201
    [10]
    Mesyats G A and Uimanov I V 2017 IEEE Trans. Plasma Sci.45 2087
    [11]
    Zhang X et al 2019 J. Phys. D: Appl. Phys. 52 035204
    [12]
    Tsventoukh M M 2018 Phys. Plasmas 25 053504
    [13]
    Beilis I I 2019 IEEE Trans. Plasma Sci. 47 3412
    [14]
    Beilis I 2020 Plasma and Spot Phenomena in Electrical Arcs (Berlin: Springer) (https://doi.org/10.1007/978-3-030-44747-2)
    [15]
    Benilov M S 2020 J. Phys. D: Appl. Phys. 53 013002
    [16]
    Yang G and Heberlein J 2007 Plasma Sources Sci. Technol.16 529
    [17]
    Chen X and Li H P 2001 Int. J. Heat Mass Transfer 44 2541
    [18]
    Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
    [19]
    Murphy A B 2015 Plasma Chem. Plasma Process. 35 471
    [20]
    Trelles J P 2020 Plasma Chem. Plasma Process. 40 727
    [21]
    Murphy A B and Uhrlandt D 2018 Plasma Sources Sci.Technol. 27 063001
    [22]
    Baeva M and Uhrlandt D 2017 Plasma Phys. Technol. 4 203
    [23]
    Baeva M et al 2016 J. Phys. D: Appl. Phys. 49 245205
    [24]
    Li H P and Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010
    [25]
    Li H P, Ostrikov K and Sun W T 2018 Phys. Rep. 770 1
    [26]
    Guo H et al 2018 Sci. Rep. 8 4783
    [27]
    Li H P, Zhang X N and Xia W D 2013 Phys. Plasmas 20 033509
    [28]
    Watanabe T and Sugimoto N 2004 Thin Solid Films 457 201
    [29]
    Watanabe T, Atsuchi N and Shigeta M 2007 Thin Solid Films 515 4209
    [30]
    Watanabe T et al 1996 J. Mater. Res. 11 2598
    [31]
    Sun S R et al 2020 J. Phys. D: Appl. Phys. 53 305202
    [32]
    Wang H X et al 2020 J. Phys. D: Appl. Phys. 53 505205
    [33]
    Sun S R, Wang H X and Zhu T 2020 Contrib. Plasma Phys. 60 e201900094
    [34]
    Sun J H et al 2020 Plasma Chem. Plasma Process. 40 1383
    [35]
    Sun S R et al 2019 Plasma Chem. Plasma Process. 40 261
    [36]
    Yang G and Heberlein J V 2007 J. Phys. D: Appl. Phys.40 5649
    [37]
    Ramshaw J D and Chang C H 1996 Phys. Rev. E 53 6382
    [38]
    Ramshaw J D and Chang C H 1991 Plasma Chem. Plasma Process. 11 395
    [39]
    Ramshaw J D 1990 J. Non-Equilib. Thermodyn. 15 295
    [40]
    Zhu T et al 2019 Plasma Sci. Technol. 21 125406
    [41]
    Wang H X et al 2017 Plasma Chem. Plasma Process. 37 877
    [42]
    Baeva M et al 2012 Plasma Sources Sci. Technol. 21 055027
    [43]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [44]
    Jonkers J et al 2003 Plasma Sources Sci. Technol. 12 464
    [45]
    Cunningham A J, O’Malley T F and Hobson R M 1981 J. Phys. B: At. Mol. Phys. 14 773
    [46]
    Bultel A et al 2002 Phys. Rev. E 65 046406
    [47]
    Lymberopoulos D P and Economou D J 1993 J. Appl. Phys.73 3668
    [48]
    Kabouzi Y et al 2007 Phys. Rev. E 75 016402
    [49]
    Devoto R S 1973 Phys. Fluids 16 616
    [50]
    Fridman A et al 2007 Transport Phenomena in Plasma (London: Elsevier)
    [51]
    Konishi K et al 2017 Weld. World 61 197
    [52]
    Chen S Q and Wang H X 2012 Chin. Phys. Lett. 29 025202
    [53]
    Wang H X, Sun S R and Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese)
    [54]
    Wang H X, Chen S Q and Chen X 2012 J. Phys. D: Appl.Phys. 45 165202
    [55]
    Aziz R A and Slaman M J 1990 J. Chem. Phys. 92 1030
    [56]
    Aubreton J, Bonnefoi C and Mexmain J M 1986 Rev. Phys.Appl. 21 365
    [57]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
    [58]
    Sanders N A and Pfender E 1984 J. Appl. Phys. 55 714
    [59]
    Jenista J, Heberlein V R and Pfender E 1997 IEEE Trans.Plasma Sci. 25 883
    [60]
    Li H P and Chen X 2001 J. Phys. D: Appl. Phys. 34 L99
    [61]
    Trelles J P, Heberlein J V R and Pfender E 2007 J. Phys. D:Appl. Phys. 40 5937
    [62]
    Huang R Z et al 2011 IEEE Trans. Plasma Sci. 39 1974
    [63]
    Cressault Y et al 2013 J. Phys. D: Appl. Phys. 46 415207
    [64]
    Comsol 2020 COMSOL Multiphysics v. 5.2a (www.comsol.com)
    [65]
    Sanders N et al 1982 J. Appl. Phys. 53 4136
    [66]
    Ye R B, Murphy A B and Takamasa I 2007 Plasma Chem.Plasma Process. 27 189
  • Related Articles

    [1]S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846
    [2]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Xinshuai YANG (杨新帅), Ruiji HU (胡睿佶), Jun CHEN (陈俊), Fudi WANG (王福地), Jia FU (符佳), Yingying LI (李颖颖), Hongming ZHANG (张洪明), Yongcai SHEN (沈永才), Xianghui YIN (尹相辉), Bo LYU (吕波), EAST team. Measurement of impurity lines with two- crystal x-ray spectrometers on EAST[J]. Plasma Science and Technology, 2018, 20(12): 124001. DOI: 10.1088/2058-6272/aad177
    [5]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [6]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [7]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [8]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [9]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03
  • Cited by

    Periodical cited type(1)

    1. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589

    Other cited types(0)

Catalog

    Article views (105) PDF downloads (108) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return