Citation: | Baowang LIU, Fei QI, Dejiang ZHOU, Lanlan NIE, Yubin XIAN, Xinpei LU. A novel flexible plasma array for large-area uniform treatment of an irregular surface[J]. Plasma Science and Technology, 2022, 24(3): 035403. DOI: 10.1088/2058-6272/ac2725 |
In this work, we demonstrate a flexible multi-pin plasma generator with movable electrodes, which can change the shape of the electrode array freely, and then provide a large-area uniform plasma for the treatment of surfaces of different shapes. Discharge characteristics including U–I waveforms and discharge images and sterilization performance under three different electrode configurations (flat–flat, flat–curve, curve–curve) are investigated. Very similar results are acquired between the flat–flat configuration and the curve–curve configuration, which is much better than that under flat–curve configuration. This flexible multi-pin plasma generator offers a simple method to treat different irregularly shaped surfaces uniformly with a single device. Moreover, this device provides a foundation for developing a self-adaption large-scale uniform plasma generator by further introducing automatic adjustment of the position of every electrode driven by motors with discharge current feedback in the following study. Thus it will promote the applications of atmospheric-pressure cold plasmas significantly.
[1] |
Renninger S, Lambarth M and Birke K P 2020 J. CO2 Util. 42 101322 doi: 10.1016/j.jcou.2020.101322
|
[2] |
Mansfeld D et al 2020 J. CO2 Util. 40 101197 doi: 10.1016/j.jcou.2020.101197
|
[3] |
Zhang S et al 2021 Plasma Sci. Technol. 23 064007 doi: 10.1088/2058-6272/abed30
|
[4] |
Wang X P et al 2020 Sep. Purif. Technol. 240 116659 doi: 10.1016/j.seppur.2020.116659
|
[5] |
Kazemi M and Taghvaei H 2021 Sep. Purif. Technol. 260 118236 doi: 10.1016/j.seppur.2020.118236
|
[6] |
Jiang B et al 2014 Chem. Eng. J. 236 348 doi: 10.1016/j.cej.2013.09.090
|
[7] |
Gan Z L et al 2021 LWT 136 110223 doi: 10.1016/j.lwt.2020.110223
|
[8] |
Siadati S et al 2021 J. Phys. D: Appl. Phys. 54 025204 doi: 10.1088/1361-6463/abb624
|
[9] |
Tonmitr N et al 2021 IEEE Trans. Plasma Sci. 49 154 doi: 10.1109/TPS.2020.3016378
|
[10] |
Cheng H et al 2016 High Volt. 1 62 doi: 10.1049/hve.2016.0023
|
[11] |
Gharde S et al 2020 Rev. Adh. Adh. 8 1 doi: 10.7569/RAA.2020.097301
|
[12] |
Weerasinghe J et al 2020 Nanomaterials 10 874 doi: 10.3390/nano10050874
|
[13] |
Wang D Z et al 2011 Appl. Phys. Lett. 98 161501 doi: 10.1063/1.3582923
|
[14] |
Ponizovskiy A Z 2020 J. Phys. D: Appl. Phys. 53 495203 doi: 10.1088/1361-6463/abb50a
|
[15] |
Tanakaran Y and Matra K 2022 J. Plant Growth Regul. 41 178 doi: 10.1007/s00344-020-10275-1
|
[16] |
Liu T J et al 2021 IEEE Trans. Plasma Sci. 49 317 doi: 10.1109/TPS.2020.3042427
|
[17] |
Li J et al 2020 Adv. Sci. (Weinh) 7 1902616 doi: 10.1002/advs.201902616
|
[18] |
Bo Z et al 2014 Phys. Status Solidi (B) 251 155 doi: 10.1002/pssb.201350033
|
[19] |
Fan Z et al 2018 Phys. Plasmas 25 053519 doi: 10.1063/1.5008779
|
[20] |
Ueno H, Kawahara S and Nakayama H 2011 Ozone: Sci. Eng. 33 98 doi: 10.1080/01919512.2011.547821
|
[21] |
Yang H L et al 2015 Jpn. J. Appl. Phys. 54 106201 doi: 10.7567/JJAP.54.106201
|
[22] |
Florkowski M et al 2021 High Volt. 6 576 doi: 10.1049/hve2.12106
|
[23] |
Bauer G and Graves D B 2016 Plasma Process. Polym. 13 1157 doi: 10.1002/ppap.201600089
|
[24] |
Hu M and Guo Y 2012 Plasma Sci. Technol. 14 735 doi: 10.1088/1009-0630/14/8/10
|
[25] |
Tanakaran Y and Matra K 2020 Phys. Status Solidi (a) 218 2000240 doi: 10.1002/pssa.202000240
|
[26] |
Srisonphan S and Kasemsuwan V 2021 Surf. Interfaces 22 100877 doi: 10.1016/j.surfin.2020.100877
|
[27] |
Ehlbeck J et al 2011 J. Phys. D: Appl. Phys. 44 013002 doi: 10.1088/0022-3727/44/1/013002
|
[28] |
Pérez-Ruiz V H et al 2012 J. Phys. Conf. Ser. 370 012026 doi: 10.1088/1742-6596/370/1/012026
|
[29] |
Jia R Z et al 2018 Jpn. J. Appl. Phys. 57 126203 doi: 10.7567/JJAP.57.126203
|
[30] |
Gershman S et al 2021 Sci. Rep. 11 4626 doi: 10.1038/s41598-021-84086-z
|
[1] | Tatiana HABIB, José Mauricio A. CAIUT, Bruno CAILLIER. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ ions and a capping agent[J]. Plasma Science and Technology, 2024, 26(7): 075505. DOI: 10.1088/2058-6272/ad3499 |
[2] | Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008 |
[3] | Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada |
[4] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[5] | Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27 |
[6] | Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806 |
[7] | JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15 |
[8] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |
[9] | DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09 |
[10] | LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09 |