Advanced Search+
Zhongyuan CHI (池中源), Weijun ZHANG (张卫军), Qiangda YANG (杨强大). Thermophysical properties of pure gases and mixtures at temperatures of 300–30 000 K and atmospheric pressure: thermodynamic properties and solution of equilibrium compositions[J]. Plasma Science and Technology, 2021, 23(12): 125505. DOI: 10.1088/2058-6272/ac2a08
Citation: Zhongyuan CHI (池中源), Weijun ZHANG (张卫军), Qiangda YANG (杨强大). Thermophysical properties of pure gases and mixtures at temperatures of 300–30 000 K and atmospheric pressure: thermodynamic properties and solution of equilibrium compositions[J]. Plasma Science and Technology, 2021, 23(12): 125505. DOI: 10.1088/2058-6272/ac2a08

Thermophysical properties of pure gases and mixtures at temperatures of 300–30 000 K and atmospheric pressure: thermodynamic properties and solution of equilibrium compositions

Funds: This study was supported by the National Key Research and Development Program of China (No. 2017YFA0700300), the Fundamental Research Funds for the Central Universities (No. N2025032), and the Liaoning Provincial Natural Science Foundation (No. 2020-MS-362).
More Information
  • Received Date: May 17, 2021
  • Revised Date: September 22, 2021
  • Accepted Date: September 23, 2021
  • The equilibrium compositions and thermodynamic properties (density, enthalpy, etc at constant pressure) of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper. The homotopy Levenberg–Marquardt algorithm was proposed to accurately solve nonlinear equations with singular Jacobian matrices, and is constructed by the Saha equation and Guldberg–Waage equation combined with mass conservation, the electric neutrality principle and Dalton's partial pressure law, to solve the problem of dependence on the initial value in the process of iteration calculation. In this research, the equations at a higher temperature were solved and used as the auxiliary equations, and the homotopy control parameters' sequence of the homotopy equations was selected by equal ratios. For auxiliary equations, the iterative initial value was obtained by assuming that there were only the highest-valence atomic cations and electrons at this temperature, and the plasma equilibrium composition distribution with the required accuracy was ultimately solved under the current conditions employing the Levenberg–Marquardt algorithm. The control parameter sequence was arranged according to the geometric sequence and the homotopy step was gradually shortened to ensure continuity of the homotopy process. Finally, the equilibrium composition and thermodynamic properties of pure N2, Mg(30%)–CO2(70%) and Mg(40%)–CO(50%)–N2(10%) mixture plasma at atmospheric pressure were calculated and the calculation process of some specified temperatures was shown and analyzed. The calculation accuracy of equilibrium composition is higher than other findings in the literature. The results for the thermodynamic properties are in good agreement with data reported by the literature.
  • [1]
    Qian F, Farouk B and Mutharasan R 1995 Metall. Mater.Trans. B 26 1057
    [2]
    Jian X X and Wu C S 2015 Int. J. Heat Mass Transf. 84 839
    [3]
    Rietman E A, Patel S H and Lory E R 1996 Comput. Operat.Res. 23 573
    [4]
    Jacobs T et al 2012 Plasma Chem. Plasma Process 32 1039
    [5]
    Oda T 2003 J Electr. 57 293
    [6]
    Rong M Z et al 2014 J. Phys. D Appl. Phys. 47 495202
    [7]
    Coufal O and Živný O 2011 Eur. Phys. J. D 61 131
    [8]
    Gleizes A, Gonzalez J J and Freton P 2005 J. Phys. D Appl.Phys. 38 R153
    [9]
    Murphy A B 2001 J. Phys. D Appl. Phys. 34 R151
    [10]
    Cressault Y et al 2010 J. Phys. D Appl. Phys. 43 335204
    [11]
    Murphy A B and Arundell C J 1994 Plasma Chem. Plasma Process 14 451
    [12]
    Wang W Z et al 2012 Plasma Chem. Plasma Process 32 75
    [13]
    Gleizes A, Chervy B and Gonzalez J J 1999 J. Phys. D Appl.Phys. 32 2060
    [14]
    Colombo V, Ghedini E and Sanibondi P 2008 Progr. Nucl.Energy 50 921
    [15]
    Holclajtner-Antunović I et al 1996 J. Anal. At. Spectrom. 11 325
    [16]
    McBride B J and Gordon S 1996 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User’s Manual and Program Description (Nasa Reference Publications 1311)
    [17]
    Godin D and Trépanier J Y 2004 Plasma Chem. Plasma Process 24 447
    [18]
    Frolov V Y and Ivanov D V 2018 J. Phys. Conf. Ser. 1058 012040
    [19]
    Rydalevskaya M A 2017 Phys. A: Stat. Mech. Appl. 476 49
    [20]
    Zhong L L et al 2020 J. Phys. D Appl. Phys. 53 065202
    [21]
    Kanzow C, Yamashita N and Fukushima M 2004 J. Comput.Appl. Math. 172 375
    [22]
    Liao S J 1997 Commun. Nonl. Sci. Numer. Simul. 2 95
    [23]
    Fan J Y 2013 Math. Comput. 83 1173
    [24]
    Chen L 2016 Appl. Math. Comput. 285 79
    [25]
    Odibat Z, Momani S and Xu H 2010 Appl. Math. Modell.34 593
    [26]
    Abbasbandy S 2006 Phys. Lett. A 360 109
    [27]
    Huber K 1979 Molecular Spectra and Molecular Structure. IV Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
    [28]
    Bacri J and Raffanel S 1987 Plasma Chem. Plasma Process 7 53
    [29]
    ‘Atomic Spectra Database NIST Standard Reference Database 78’. Version 5.8 ed 2020 (https://nist.gov/pml/atomicspectra-database/)(https:/doi.org/10.18434/T4W30F)
    [30]
    Farrenq R et al 1991 J. Mol. Spectrosc. 149 375
    [31]
    Ostrowska-Kopeć M et al 2015 J. Mol. Spectrosc. 314 63
    [32]
    Eidelsberg M et al 1987 J. Mol. Spectrosc. 121 309
    [33]
    Kępa R et al 2004 J. Mol. Spectrosc. 228 66
    [34]
    Bembenek Z et al 1994 J. Mol. Spectrosc. 165 205
    [35]
    Shi D H et al 2011 Computat. Theoret. Chem. 978 126
    [36]
    Liu H et al 2014 Spectrochim. Acta Part A: Mol. Biomol.Spectrosc. 124 216
    [37]
    Laher R R and Gilmore F R 1991 J. Phys. Chem. Ref. Data 20 685
    [38]
    Kirby K and Liu B 1979 J. Chem. Phys. 70 893
    [39]
    Chase M W Jr 1998 NIST-JANAF Thermochemical Tables 4th ed (College Park, MA: American Institute of Physics)
    [40]
    Knowles P J et al 1988 J. Chem. Phys. 89 7334
    [41]
    Reddy R R et al 2006 J. Quant. Spectrosc. Radiat. Transf.97 344
    [42]
    Gray L D and Young A T 1969 J. Quant. Spectrosc. Radiat.Transf. 9 569
  • Related Articles

    [1]Zhipeng CHEN, Lizhi ZHU, Xin XU, Wei ZHENG, Ming ZHANG, Li GAO, Minghui XIA, Jie YANG, Mingchong ZHU, Zhigang HAO, Shaodong JIAO, Zhifeng CHENG, Zhoujun YANG, Xiaoqing ZHANG, Zhongyong CHEN, Nengchao WANG, Yonghua DING, Ge ZHUANG, Kenneth W GENTLE, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Realization of divertor configuration discharge in J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124008. DOI: 10.1088/2058-6272/aca0dc
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [8]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [9]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.
    [10]T. TAKIZUKA. Development of the PARASOL Code and Full Particle Simulation of Tokamak Plasma with an Open-Field SOL-Divertor Region Using PARASOL[J]. Plasma Science and Technology, 2011, 13(3): 316-325.
  • Cited by

    Periodical cited type(6)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8
    3. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533
    4. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    5. Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271
    6. Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf

    Other cited types(0)

Catalog

    Article views (111) PDF downloads (44) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return