Advanced Search+
Guozheng SONG (宋国正), Haohua ZONG (宗豪华), Hua LIANG (梁华), Zhi SU (苏志), Like XIE (谢理科), Xing ZHENG (郑猩). Parametric study of high-frequency characteristics of plasma synthetic jet actuator[J]. Plasma Science and Technology, 2021, 23(12): 125503. DOI: 10.1088/2058-6272/ac30d7
Citation: Guozheng SONG (宋国正), Haohua ZONG (宗豪华), Hua LIANG (梁华), Zhi SU (苏志), Like XIE (谢理科), Xing ZHENG (郑猩). Parametric study of high-frequency characteristics of plasma synthetic jet actuator[J]. Plasma Science and Technology, 2021, 23(12): 125503. DOI: 10.1088/2058-6272/ac30d7

Parametric study of high-frequency characteristics of plasma synthetic jet actuator

Funds: This research work is supported by National Natural Science Foundation of China (No. 12002384), the National Key Laboratory Foundation of China (No. 614220210200112), and the Foundation Strengthening Project (No. 2019-JCJQ-JJ-077).
More Information
  • Received Date: September 01, 2021
  • Revised Date: October 16, 2021
  • Accepted Date: October 17, 2021
  • A major issue of plasma synthetic jet actuator (PSJA) is the severe performance deterioration at high working frequency. In this study, experiments and numerical simulation are combined together to investigate the influence of thermal conductivity, throat length (Lth) and discharge duration (Td) on the high-frequency characteristics of PSJA. Results show that the variation of the actuator thermal conductivity and discharge duration will not alter the saturation frequency of the actuator, whereas decreasing the throat length results in an increase of the saturation frequency. For a short-duration capacitive discharge of 1.7 μs, a clear shock wave is issued from the orifice, followed by a weak jet. As a comparison, when the discharge duration is increased up to 202.6 μs, a strong jet column is formed and no obvious shock wave can be visualized. Based on numerical simulation results, it becomes clear that the long-duration pulse-DC discharge is able to heat the cavity gas to a much higher temperature (3141 K) than capacitive discharge, greatly improving the conversion efficiency of the arc discharge energy to the internal energy of the cavity gas. In addition, high-speed Schlieren imaging is deployed to study the performance degradation mechanism of PSJA at high working frequency. Monitor of the exit jet grayscale indicates that as long as the saturation frequency is exceeded, the actuator becomes unstable due to insufficient refresh time. The higher the discharge frequency, the more frequently the phenomenon of 'misfires' will occur, which explains well the decaying jet total pressure at above saturation frequency.
  • [1]
    Corke T C, Enloe C L and Wilkinson S P 2010 Ann. Rev.Fluid. Mech. 42 505
    [2]
    Little J et al 2019 Plasma Sources Sci. Technol. 28 014002
    [3]
    Zong H H et al 2018 Actuators 7 77
    [4]
    Narayanaswamy V, Raja L L and Clemens N T 2010 AIAA J 48 297
    [5]
    Zhang C et al 2019 Plasma Sources Sci. Technol. 28 064001
    [6]
    Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001
    [7]
    Xie L K et al 2019 Sensors Actuat. A: Phys. 297 111550
    [8]
    Haack S et al 2008 Characterization of a high-speed flow control actuator using digital speckle tomography and PIV Proc. of the 4th Flow Control Conf. (Seattle Washington) (AIAA)
    [9]
    Cybyk B, Wilkerson J and Simon D 2006 Enabling high-fidelity modeling of a high-speed flow control actuator array Proc. of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conf. (Canberra, Australia) (AIAA)
    [10]
    Caruana D et al 2013 The plasma synthetic jet actuator, physics, modeling and flow control application on separation hal-01184643 Alain Appriou: Aerospace Lab
    [11]
    Zong H H, van Pelt T and Kotsonis M 2018 Exp. Fluids 59 169
    [12]
    Hardy P et al 2010 Plasma synthetic jet for flow control Proc.of the 40th Fluid Dynamics Conf. and Exhibit (Chicago Illinois) (AIAA)
    [13]
    Narayanaswamy V, Raja L L and Clemens N T 2012 AIAA J 50 246
    [14]
    Yang G et al 2016 Large-eddy simulation of shock-induced flow separation control using SparkJet concept Proc. of the 54th AIAA Aerospace Sciences Meeting (San Diego,California, USA) (AIAA)
    [15]
    Grossman K, Bohdan C and Van Wie D SparkJet actuators for flow control Proc. of the 41st Aerospace Sciences Meeting and Exhibit (Reno, Nevada) (AIAA)
    [16]
    Cybyk B, Grossman K and Van Wie D 2003 Computational assessment of the SparkJet flow control actuator Proc. of the 33rd AIAA Fluid Dynamics Conf. and Exhibit (Orlando,Florida) (AIAA)
    [17]
    Haack S et al 2013 Recent performance-based advances in SparkJet actuator design for supersonic flow applications Proc. of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Grapevine, Texas) (AIAA)
    [18]
    Zong H H and Kotsonis M 2018 J. Fluid Mech. 837 147
    [19]
    Zong H H 2018 AIAA J 56 2075
    [20]
    Emerick T et al 2012 SparkJet actuator characterization in supersonic crossflow Proc. of the 6th AIAA Flow Control Conf. (New Orleans, Louisiana) (AIAA)
    [21]
    Haack S et al 2010 Development of an analytical SparkJet model Proc. of the 5th Flow Control Conf. (Chicago, Illinois) (AIAA)
    [22]
    Li Y et al 2016 Chin. Phys. B 25 095205
    [23]
    Wang L et al 2014 Sci. China Phys., Mech. Astron. 57 2309
    [24]
    Zong H H et al 2015 Phys. Fluids 27 027105
    [25]
    Haack S et al 2011 Experimental estimation of SparkJet efficiency Proc. of the 42nd AIAA Plasmadynamics and Lasers Conf. (Honolulu, Hawaii) (AIAA)
    [26]
    de Luca L, Girfoglio M and Coppola G 2014 AIAA J 52 1733
    [27]
    Chiatto M and de Luca L 2017 Numerical and experimental frequency response of plasma synthetic jet actuators Proc. of the 55th AIAA Aerospace Sciences Meeting (Grapevine,Texas) (AIAA)
  • Related Articles

    [1]Zhipeng CHEN, Lizhi ZHU, Xin XU, Wei ZHENG, Ming ZHANG, Li GAO, Minghui XIA, Jie YANG, Mingchong ZHU, Zhigang HAO, Shaodong JIAO, Zhifeng CHENG, Zhoujun YANG, Xiaoqing ZHANG, Zhongyong CHEN, Nengchao WANG, Yonghua DING, Ge ZHUANG, Kenneth W GENTLE, Yunfeng LIANG, Yuan PAN, the J-TEXT Team. Realization of divertor configuration discharge in J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124008. DOI: 10.1088/2058-6272/aca0dc
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [8]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [9]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.
    [10]T. TAKIZUKA. Development of the PARASOL Code and Full Particle Simulation of Tokamak Plasma with an Open-Field SOL-Divertor Region Using PARASOL[J]. Plasma Science and Technology, 2011, 13(3): 316-325.
  • Cited by

    Periodical cited type(6)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8
    3. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533
    4. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    5. Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271
    6. Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf

    Other cited types(0)

Catalog

    Article views (116) PDF downloads (114) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return