Citation: | Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476 |
The effect on the germination and seedling growth of radish (Raphanus sativus) seeds were examined employing a dielectric barrier discharge (DBD) at atmospheric pressure and room temperature for various treatment time. DBD plasma using argon gas of flow rate 2 l m-1 was employed in this study. Radish seeds were treated with DBD plasma for 1–5 min, respectively. Germination characteristics, seedling growth parameters, the contact angle of the seed coat, water uptake capacity, mass loss, the temperature of the seeds, chlorophyll, and carotenoid contents of the seedlings were measured before and after the DBD plasma treatments. Plasma treatment of radish seeds significantly increased germination-related characters, including germination percentage, fresh and dry weight, vigor index, and total carotenoids contents. However, the cumulative production rate was found to be decreased. Results from the experiment indicate an acceleration in the water uptake of the radish seeds and make the seed surface hydrophilic by plasma treatment. Scanning electron microscopy analysis showed that etching effects on the seed coat occurred after the argon plasma treatments, which affected the wettability of the radish seed. The experimental findings showed that seeds being treated by DBD plasma for 2 and 3 min had a positive effect on the germination and seedling growth of radish.
The authors are very thankful to Prof Dr Eun Ha Choi, and Dr Bhagirath Ghimire (Kwangwoon University, Korea), Milan Simek (Institute of Plasma Physics, The Czech Academy of Sciences), and Dr Johannes Gruenwald (Gruenwald Laboratories) for their valuable help and support. The corresponding author would also like to thank Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal for providing financial and technical support. The authors are also grateful to all the researchers of the Department of Physics, Kathmandu University who provided valuable suggestions for the completion of this work.
[1] |
Šimek M et al 2019 Plasma Process. Polym. 16 1700250 doi: 10.1002/ppap.201700250
|
[2] |
Bonizzoni G and Vassallo E 2002 Vacuum 64 327 doi: 10.1016/S0042-207X(01)00341-4
|
[3] |
Šerá B and Šerý M 2018 Plasma Sci. Technol. 20 044012 doi: 10.1088/2058-6272/aaacc6
|
[4] |
Cvelbar U et al 2019 Plasma Process. Polym. 16 1700228 doi: 10.1002/ppap.201700228
|
[5] |
Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001 doi: 10.1088/0022-3727/42/5/053001
|
[6] |
Zahoranová A et al 2016 Plasma Chem. Plasma Process. 36 397 doi: 10.1007/s11090-015-9684-z
|
[7] |
Baniya H B et al 2021 J. Chem. 2021 6638939 doi: 10.1155/2021/6638939
|
[8] |
Bekeschus S et al 2019 Plasma Process. Polym. 16 1800033 doi: 10.1002/ppap.201800033
|
[9] |
Weltmann K D et al 2019 Plasma Process. Polym. 16 1800118 doi: 10.1002/ppap.201800118
|
[10] |
Guragain R P et al 2021 Rev. Adhes. Adhes. 9 153
|
[11] |
Ambrico P F et al 2020 J. Phys. D: Appl. Phys. 53 104001 doi: 10.1088/1361-6463/ab5b1b
|
[12] |
Zhou R et al 2016 Sci. Rep. 6 35714 doi: 10.1038/srep35714
|
[13] |
Brandenburg R et al 2019 Plasma Process. Polym. 16 1700238 doi: 10.1002/ppap.201700238
|
[14] |
Pankaj S K et al 2018 Foods 7 4 doi: 10.3390/foods7010004
|
[15] |
Štěpánová V et al 2018 Plasma Process. Polym. 15 1700076 doi: 10.1002/ppap.201700076
|
[16] |
Phan K T K et al 2017 Int. J. Food Sci. Technol. 52 2127 doi: 10.1111/ijfs.13509
|
[17] |
Randeniya L K and De Groot G J J B 2015 Plasma Process. Polym. 12 608 doi: 10.1002/ppap.201500042
|
[18] |
Bhilwadikar T et al 2019 Compr. Rev. Food Sci. Food Saf. 18 1003 doi: 10.1111/1541-4337.12453
|
[19] |
Sivachandiran L and Khacef A 2017 RSC Adv. 7 1822 doi: 10.1039/C6RA24762H
|
[20] |
Ling L et al 2014 Sci. Rep. 4 5859 doi: 10.1038/srep05859
|
[21] |
Calicioglu O et al 2019 Sustainability 11 222 doi: 10.3390/su11010222
|
[22] |
Jiang J F et al 2014 Plasma Sci. Technol. 16 54 doi: 10.1088/1009-0630/16/1/12
|
[23] |
Stolárik T et al 2015 Plasma Chem. Plasma Process. 35 659 doi: 10.1007/s11090-015-9627-8
|
[24] |
Šerá B et al 2010 IEEE Trans. Plasma Sci. 38 2963 doi: 10.1109/TPS.2010.2060728
|
[25] |
Banihani S A 2017 Nutrients 9 1014 doi: 10.3390/nu9091014
|
[26] |
Song J S et al 2020 Front. Plant Sci. 11 1 doi: 10.3389/fpls.2020.00001
|
[27] |
Adhikari B, Adhikari M and Park G 2020 Appl. Sci. 10 6045 doi: 10.3390/app10176045
|
[28] |
Sery M et al 2020 IEEE Trans. Plasma Sci. 48 939 doi: 10.1109/TPS.2020.2981600
|
[29] |
Scholtz V et al 2019 J. Food Qual. 2019 7917825 doi: 10.1155/2019/6468018
|
[30] |
Henselová M et al 2012 Biologia 67 490 doi: 10.2478/s11756-012-0046-5
|
[31] |
Li L et al 2015 Sci. Rep. 5 13033 doi: 10.1038/srep13033
|
[32] |
Tong J Y et al 2014 Plasma Sci. Technol. 16 260 doi: 10.1088/1009-0630/16/3/16
|
[33] |
Hayashi N et al 2015 Japan. J. Appl. Phys. 54 06GD01 doi: 10.7567/JJAP.54.06GD01
|
[34] |
Ji S H et al 2016 Arch. Biochem. Biophys. 605 117 doi: 10.1016/j.abb.2016.02.028
|
[35] |
Wang C Q and He X N 2006 Surf. Coat. Technol. 201 3377 doi: 10.1016/j.surfcoat.2006.07.205
|
[36] |
Šimek M, Pekárek S and Prukner V 2010 Plasma Chem. Plasma Process. 30 607 doi: 10.1007/s11090-010-9245-4
|
[37] |
Nersisyan G and Graham W G 2004 Plasma Sources Sci. Technol. 13 582 doi: 10.1088/0963-0252/13/4/005
|
[38] |
Kriegseis J et al 2011 J. Electrostat. 69 302 doi: 10.1016/j.elstat.2011.04.007
|
[39] |
Manley T C 1943 Trans. Electrochem. Soc. 84 83 doi: 10.1149/1.3071556
|
[40] |
Wagner H E et al 2003 Vacuum 71 417 doi: 10.1016/S0042-207X(02)00765-0
|
[41] |
Tao X P, Lu R D and Li H 2012 Plasma Sci. Technol. 14 723 doi: 10.1088/1009-0630/14/8/08
|
[42] |
Kim J H, Choi Y H and Hwang Y S 2006 Phys. Plasmas 13 093501 doi: 10.1063/1.2338282
|
[43] |
Šimek M 2014 J. Phys. D: Appl. Phys. 47 463001 doi: 10.1088/0022-3727/47/46/463001
|
[44] |
Homola T et al 2020 Plasma Sources Sci. Technol. 29 095014 doi: 10.1088/1361-6595/aba987
|
[45] |
Guragain R P et al 2020 J. Technol. Space Plasmas 1 27 doi: 10.31281/jtsp.v1i1.11
|
[46] |
Wang Y et al 2017 Plasma Sci. Technol. 19 115403 doi: 10.1088/2058-6272/aa861d
|
[47] |
Šimek M et al 2018 Plasma Sources Sci. Technol. 27 055019 doi: 10.1088/1361-6595/aac240
|
[48] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2020 ‘NIST Atomic Spectra Database’ (version 5.8) (https://physics.nist.gov/asd)
|
[49] |
Etzler F M 2013 Rev. Adhes. Adhes. 1 3 doi: 10.7569/RAA.2013.097301
|
[50] |
Volin J C et al 2000 Crop Sci. 40 1706 doi: 10.2135/cropsci2000.4061706x
|
[51] |
Zhang J J et al 2017 Sci. Rep. 7 41917 doi: 10.1038/srep41917
|
[52] |
Copeland L O and McDonald M B 1999 Principles of Seed Science and Technology (Boston: Springer US)
|
[53] |
Pérez-Pizá M C et al 2019 Heliyon 5 e01495 doi: 10.1016/j.heliyon.2019.e01495
|
[54] |
Abdul-Baki A A and Anderson J D 1973 Crop Sci. 13 630 doi: 10.2135/cropsci1973.0011183X001300060013x
|
[55] |
Bahadur B, Rajam M V, Sahijram L and Krishnamurthy K V 2015 Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement vol 1 (India: Springer)
|
[56] |
Young A J 1991 Physiol. Plant. 83 702 doi: 10.1111/j.1399-3054.1991.tb02490.x
|
[57] |
Sumanta N et al 2014 Res. J. Chem. Sci. 4 63
|
[58] |
Fernandes F A N, Santos V O and Rodrigues S 2019 Food Res. Int. 115 16 doi: 10.1016/j.foodres.2018.07.042
|
[59] |
Nabi F et al 2020 J. Anim. Physiol. Anim. Nutr. 104 1809 doi: 10.1111/jpn.13375
|
[60] |
Molina R et al 2018 Sci. Rep. 8 16442 doi: 10.1038/s41598-018-34801-0
|
[61] |
Lotfy K, Al-Harbi N A and El-raheem H A 2019 Plasma Chem. Plasma Process. 39 897 doi: 10.1007/s11090-019-09969-6
|
[62] |
Varnagiris S et al 2020 Processes 8 1575 doi: 10.3390/pr8121575
|
[63] |
Karmakar S et al 2021 Heliyon 7 e06458 doi: 10.1016/j.heliyon.2021.e06458
|
[1] | Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb |
[2] | Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d |
[3] | Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a |
[4] | Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf |
[5] | Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2 |
[6] | Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838 |
[7] | Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001 |
[8] | TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12 |
[9] | LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05 |
[10] | LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01 |