Advanced Search+
Weili FAN, Xiaohan HOU, Miao TIAN, Kuangya GAO, Yafeng HE, Yaxian YANG, Qian LIU, Jingfeng YAO, Fucheng LIU, Chengxun YUAN. Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes[J]. Plasma Science and Technology, 2022, 24(1): 015402. DOI: 10.1088/2058-6272/ac3562
Citation: Weili FAN, Xiaohan HOU, Miao TIAN, Kuangya GAO, Yafeng HE, Yaxian YANG, Qian LIU, Jingfeng YAO, Fucheng LIU, Chengxun YUAN. Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes[J]. Plasma Science and Technology, 2022, 24(1): 015402. DOI: 10.1088/2058-6272/ac3562

Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes

More Information
  • Corresponding author:

    Fucheng LIU, E-mail: hdlfc@hbu.edu.cn

    Chengxun YUAN, E-mail: yuancx@hit.edu.cn

  • Received Date: July 01, 2021
  • Revised Date: October 28, 2021
  • Accepted Date: October 31, 2021
  • Available Online: March 18, 2024
  • Published Date: November 22, 2021
  • We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes. A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized. Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements with θ = π/3 is suggested. An active control on the geometrical shape, size and angular orientation of the plasma elements has been achieved. Moreover, the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera. The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices, demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves. The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.

  • This work was supported by National Natural Science Foundation of China (Nos. 11875014, 11975089) and the Natural Science Foundation of Hebei Province (Nos. A2021201010, A2021201003, and A2017201099).

  • [1]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89 doi: 10.1585/jspf.80.89
    [2]
    Wang B and Cappelli M A 2015 Appl. Phys. Lett. 107 171107 doi: 10.1063/1.4934886
    [3]
    Zhang H F and Liu S B 2015 IEEE J. Sel. Top. Quantum Electron. 21 1 doi: 10.1109/JSTQE.2014.2354633
    [4]
    Song H S et al 2020 Photonics Nanostruct. 41 100831 doi: 10.1016/j.photonics.2020.100831
    [5]
    Zhang H F et al 2012 Phys. Plasmas 19 022103 doi: 10.1063/1.3680628
    [6]
    Tan H Y et al 2019 IEEE Trans. Plasma Sci. 47 3986 doi: 10.1109/TPS.2019.2926347
    [7]
    Chaudhari M K and Chaudhari S 2016 Phys. Plasmas 23 112118 doi: 10.1063/1.4967867
    [8]
    Yao J F et al 2019 AIP Adv. 9 065302 doi: 10.1063/1.5097194
    [9]
    Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101 doi: 10.1063/1.4946805
    [10]
    Tan H Y et al 2019 Phys. Plasmas 26 052107 doi: 10.1063/1.5089476
    [11]
    Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514 doi: 10.1063/1.4898627
    [12]
    Iwai A et al 2020 Phys. Plasmas 27 023511 doi: 10.1063/1.5112077
    [13]
    Sakai O, Sakaguchi T and Tachibana K 2007 J. Appl. Phys. 101 073304 doi: 10.1063/1.2713939
    [14]
    Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett. 87 241505 doi: 10.1063/1.2147709
    [15]
    Matlis E H et al 2018 J. Appl. Phys. 124 093104 doi: 10.1063/1.5037469
    [16]
    Lee D S, Sakai O and Tachibana K 2009 Japan. J. Appl. Phys. 48 062004 doi: 10.1143/JJAP.48.062004
    [17]
    Yang H J, Park S J and Eden J G 2017 J. Phys. D: Appl. Phys. 50 43LT05 doi: 10.1088/1361-6463/aa8d5c
    [18]
    Sun P P et al 2019 Appl. Phys. Rev. 6 041406 doi: 10.1063/1.5120037
    [19]
    Fan W L and Dong L F 2010 Phys. Plasmas 17 113501 doi: 10.1063/1.3503625
    [20]
    Wang B, Rodríguez J A and Cappelli M A 2019 Plasma Sources Sci. Technol. 28 02LT01 doi: 10.1088/1361-6595/ab0011
    [21]
    Takayama S I et al 2005 Appl. Phys. Lett. 87 061107 doi: 10.1063/1.2009060
    [22]
    Hołub M 2012 Int. J. Appl. Electromagn. Mech. 39 81 doi: 10.3233/JAE-2012-1446
    [23]
    Bai H et al 2021 IEEE Trans. Plasma Sci. 49 1605 doi: 10.1109/TPS.2021.3073530
    [24]
    Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 36 39 doi: 10.1088/0022-3727/36/1/306
    [25]
    Fan W L et al 2013 Appl. Phys. Lett. 102 094103 doi: 10.1063/1.4794824
    [26]
    Dong L F et al 2006 Phys. Rev. E 73 066206 doi: 10.1103/PhysRevE.73.066206
    [27]
    Huang B D et al 2020 High Volt. 6 665 doi: 10.1049/hve2.12067
    [28]
    Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001 doi: 10.1088/1361-6595/ab7854
    [29]
    Khalkhali T F and Bananej A 2016 Phys. Lett. A 380 4092 doi: 10.1016/j.physleta.2016.10.012
    [30]
    Chen H M et al 2011 Opt. Express 19 3599 doi: 10.1364/OE.19.003599
    [31]
    Ji K et al 2017 J. Appl. Spectrosc. 84 824 doi: 10.1007/s10812-017-0551-y
    [32]
    Zhang H F et al 2006 Opt. Express 14 11178 doi: 10.1364/OE.14.011178
    [33]
    Lu Z L et al 2007 Opt. Express 15 1286 doi: 10.1364/OE.15.001286
    [34]
    Dixit A and Pandey P C 2017 Mod. Phys. Lett. B 31 1750156 doi: 10.1142/S0217984917501561
    [35]
    Ma P and Jäckel H 2011 J. Opt. 13 095501 doi: 10.1088/2040-8978/13/9/095501
    [36]
    Matthews A, Mingaleev S F and Kivshar Y S 2004 Laser Phys. 14 631 ( https://arxiv.org/abs/physics/0311018)
    [37]
    Peng Y C et al 2020 Phys. Status Solidi RRL 14 2000202 doi: 10.1002/pssr.202000202
    [38]
    Khalkhali T F et al 2019 Indian J. Phys. 93 1537 doi: 10.1007/s12648-019-01429-3
    [39]
    Wu S Q et al 2020 Plasma Sci. Technol. 22 115402 doi: 10.1088/2058-6272/abb077
    [40]
    Dong L F et al 2009 J. Appl. Phys. 106 013301 doi: 10.1063/1.3159891
    [41]
    Dong L F, Ran J X and Mao Z G 2005 Appl. Phys. Lett. 86 161501 doi: 10.1063/1.1906299
    [42]
    Tan H Y et al 2018 IEEE Trans. Plasma Sci. 46 539 doi: 10.1109/TPS.2018.2795613
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(8)

    Article views (276) PDF downloads (390) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return