Advanced Search+
Mingyang WU, Chijie XIAO, Xiaogang WANG, Yue LIU, Min XU, Chang TAN, Tianchao XU, Xiuming YU, Renchuan HE, Andong XU. Relationship of mode transitions and standing waves in helicon plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055002. DOI: 10.1088/2058-6272/ac567d
Citation: Mingyang WU, Chijie XIAO, Xiaogang WANG, Yue LIU, Min XU, Chang TAN, Tianchao XU, Xiuming YU, Renchuan HE, Andong XU. Relationship of mode transitions and standing waves in helicon plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055002. DOI: 10.1088/2058-6272/ac567d

Relationship of mode transitions and standing waves in helicon plasmas

  • Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves (SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation. This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return