Citation: | Jianbin LIU, Lingyi MENG, Houyang GUO, Kedong LI, Jichan XU, Huiqian WANG, Guosheng XU, Fang DING, Ling ZHANG, Yanmin DUAN, Bin ZHANG, Lin YU, Ping WANG, Ang LI, Donggui WU, Rui DING, Liang WANG. Divertor detachment operation in helium plasmas with ITER-like tungsten divertor in EAST[J]. Plasma Science and Technology, 2022, 24(7): 075101. DOI: 10.1088/2058-6272/ac621d |
Detachment in helium (He) discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor. This paper presents the experimental observations of divertor detachment achieved by increasing the plasma density in He discharges. During density ramp-up, the particle flux shows a clear rollover, while the electron temperature around the outer strike point is decreasing simultaneously. The divertor detachment also exhibits a significant difference from that observed in comparable deuterium (D) discharges. The density threshold of detachment in the He plasma is higher than that in the D plasma for the same heating power, and increases with the heating power. Moreover, detachment assisted with neon (Ne) seeding was also performed in L- and H-mode plasmas, pointing to the direction for reducing the density threshold of detachment in He operation. However, excessive Ne seeding causes confinement degradation during the divertor detachment phase. The precise feedback control of impurity seeding will be performed in EAST to improve the compatibility of core plasma performance with divertor detachment for future high heating power operations.
The authors would like to acknowledge the support and contributions of the EAST team. This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0301300, 2017YFE0402500 and 2019YFE03030000), National Natural Science Foundation of China (Nos. 11905255, 12005004, 12022511, U1867222 and U19A20113), the Institute of Energy, Hefei Comprehensive National Science Center (No. GXXT-2020-004), AHNSF (No. 2008085QA38), the CASHIPS Director's Fund (No. BJPY2019B01) and the Key Research Program of Frontier Sciences of CAS (No. ZDBS-LY-SLH010).
[1] |
ITER Physics Basis Editors 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
|
[2] |
Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
|
[3] |
Reimold F et al 2015 Nucl. Fusion 55 033004 doi: 10.1088/0029-5515/55/3/033004
|
[4] |
Leonard A W et al 2017 Nucl. Fusion 57 086033 doi: 10.1088/1741-4326/aa778c
|
[5] |
Guo H Y et al 2019 Nucl. Fusion 59 086054 doi: 10.1088/1741-4326/ab26ee
|
[6] |
Huber A et al 2013 J. Nucl. Mater. 438 S139 doi: 10.1016/j.jnucmat.2013.01.022
|
[7] |
Field A R et al 2017 Plasma Phys. Control. Fusion 59 095003 doi: 10.1088/1361-6587/aa764c
|
[8] |
Asakura N et al 1996 Nucl. Fusion 36 795 doi: 10.1088/0029-5515/36/6/I10
|
[9] |
Theiler C et al 2017 Nucl. Fusion 57 072008 doi: 10.1088/1741-4326/aa5fb7
|
[10] |
Yan L W et al 2009 J. Nucl. Mater. 390–391 246 doi: 10.1016/j.jnucmat.2009.01.075
|
[11] |
Liu J B et al 2019 Nucl. Fusion 59 126046 doi: 10.1088/1741-4326/ab4639
|
[12] |
Meng L Y et al 2020 Plasma Phys. Control. Fusion 62 065008 doi: 10.1088/1361-6587/ab877f
|
[13] |
Wischmeier M et al 2003 J. Nucl. Mater. 313–316 980 doi: 10.1016/S0022-3115(02)01427-7
|
[14] |
Pitts R A et al 2003 J. Nucl. Mater. 313–316 777 doi: 10.1016/S0022-3115(02)01429-0
|
[15] |
Canik J M et al 2017 Phys. Plasmas 24 056116 doi: 10.1063/1.4982057
|
[16] |
Wan B N et al 2019 Nucl. Fusion 59 112003 doi: 10.1088/1741-4326/ab0396
|
[17] |
Guo H Y et al 2014 Nucl. Fusion 54 013002 doi: 10.1088/0029-5515/54/1/013002
|
[18] |
Zhang B et al 2020 Nucl. Fusion 60 092001 doi: 10.1088/1741-4326/ab9be6
|
[19] |
Xu J C et al 2016 Rev. Sci. Instrum. 87 083504 doi: 10.1063/1.4960181
|
[20] |
Xu J C et al 2018 IEEE Trans. Plasma Sci. 46 1331 doi: 10.1109/TPS.2018.2794533
|
[21] |
Zhang B et al 2015 Plasma Sci. Technol. 17 831 doi: 10.1088/1009-0630/17/10/04
|
[22] |
Duan Y M et al 2011 Plasma Sci. Technol. 13 546 doi: 10.1088/1009-0630/13/5/07
|
[23] |
Zhang L et al 2015 Rev. Sci. Instrum. 86 123509 doi: 10.1063/1.4937723
|
[24] |
Mao H M et al 2017 Rev. Sci. Instrum. 88 043502 doi: 10.1063/1.4979406
|
[25] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 311 doi: 10.1088/1009-0630/16/4/02
|
[26] |
Han X et al 2014 Rev. Sci. Instrum. 85 073506 doi: 10.1063/1.4891040
|
[27] |
Wan B N et al 2022 Nucl. Fusion 62 042010 doi: 10.1088/1741-4326/ac2993
|
[28] |
Loarte A et al 1998 Nucl. Fusion 38 331 doi: 10.1088/0029-5515/38/3/303
|
[29] |
Mayer M et al 2009 J. Nucl. Mater. 390–391 538 doi: 10.1016/j.jnucmat.2009.01.087
|
[30] |
Ryter F et al 2013 Nucl. Fusion 53 113003 doi: 10.1088/0029-5515/53/11/113003
|
[31] |
Wang H Q et al 2021 Phys. Plasmas 28 052507 doi: 10.1063/5.0048428
|
[32] |
Li K D et al 2021 Nucl. Mater. Energy 26 100867 doi: 10.1016/j.nme.2020.100867
|
[1] | Ping WANG, Guanghai HU, Ning YAN, Guosheng XU, Lingyi MENG, Zhikang LU, Lin YU, Manni JIA, Yifeng WANG, Liang CHEN, Heng LAN, Xiang LIU, Mingfu WU, Liang WANG. Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075103. DOI: 10.1088/2058-6272/ac5f82 |
[2] | Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226 |
[3] | Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8 |
[4] | Zhigang ZHU (朱志刚), Qiyong ZHANG (张启勇), Yuntao SONG (宋云涛), Ming ZHUANG (庄明), Zhiwei ZHOU (周芷伟), Anyi CHENG (成安义), Ping ZHU (朱平). Present status and one upgrading method with a cold compressor of the EAST sub-cooling helium cryogenic system[J]. Plasma Science and Technology, 2017, 19(5): 55603-055603. DOI: 10.1088/2058-6272/aa58da |
[5] | Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802 |
[6] | Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101 |
[7] | LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18 |
[8] | FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14 |
[9] | ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02 |
[10] | WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439. |
1. | Yan, Y., Yang, X., Ning, P. et al. Cu/TiO2 adsorbents modified by air plasma for adsorption–oxidation of H2S. Journal of Environmental Sciences (China), 2025. DOI:10.1016/j.jes.2023.09.023 |
2. | Yu, G., Peng, B., Jiang, N. et al. Influence of rotating dielectric barrier on discharge characteristics in multi-needle-plate DBD. Plasma Processes and Polymers, 2024, 21(4): 2300176. DOI:10.1002/ppap.202300176 |
3. | Truong, V.N., Truong, H.T., Siregar, Y. et al. Atmospheric Pressure Plasma Jet (APPJ) Generation using Industrial Frequency Alternative Power Source. 2024. DOI:10.1109/ATiGB63471.2024.10717715 |
4. | Yu, G., Jiang, N., Peng, B. et al. Study on the plasma characteristics in a needle-plate dielectric barrier discharge with a rotating dielectric plate. Journal of Applied Physics, 2023, 133(8): 083302. DOI:10.1063/5.0136280 |
5. | Huang, Y., Qing, Y., Chen, Y. et al. NiFe Nanoparticle Encapsulated into Wood Carbon for Efficient Oxygen Evolution: Effect of Wood Delignification. ACS Sustainable Chemistry and Engineering, 2022, 10(46): 15233-15242. DOI:10.1021/acssuschemeng.2c04902 |