Advanced Search+
Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733
Citation: Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733

Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy

More Information
  • Corresponding author:

    Zeyad T ALWAHABI, E-mail: zeyad.alwahabi@adelaide.edu.au

  • 1 The first two authors contributed equally to this work.

  • Received Date: December 15, 2021
  • Revised Date: April 10, 2022
  • Accepted Date: April 12, 2022
  • Available Online: December 10, 2023
  • Published Date: June 28, 2022
  • Aqueous ruthenium was detected in real-time under ambient conditions using microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). A 10 mJ laser energy and 750 W microwave power were directed at an open liquid jet sample of ruthenium. It was observed that, for liquid flow, the coupling efficiency between the microwave and the laser-induced plasma was limited to 43%. The improvement in the ruthenium's signal-to-noise ratio with MW-LIBS, with respect to LIBS, was 76-fold. Based on MW-LIBS, the limit of detection for aqueous ruthenium was determined to be 957±84 ppb.

  • [1]
    Emsley J 2011 Nature's Building Blocks: Everything You Need to Know About the Elements 2nd ed (Oxford: Oxford University Press)
    [2]
    McDonald D and Hunt L B 1982 A History of Platinum and its Allied Metals (London: Europa Publications)
    [3]
    Seddon E A and Seddon K R 1984 The Chemistry of Ruthenium (Amsterdam: Elsevier)
    [4]
    Li Q et al 2018 Chem. Eng. J. 333 505 doi: 10.1016/j.cej.2017.09.170
    [5]
    Moura A S et al 2017 Catalysts 7 47 doi: 10.3390/catal7020047
    [6]
    Naota T, Takaya H and Murahashi A I 1998 Chem. Rev. 98 2599 doi: 10.1021/cr9403695
    [7]
    Zieliński G K et al 2018 J. Org. Chem. 83 2542 doi: 10.1021/acs.joc.7b02468
    [8]
    Mol J C 2004 J. Mol. Catal. A Chem. 213 39 doi: 10.1016/j.molcata.2003.10.049
    [9]
    Dong Y F, Matson J B and Edgar K J 2017 Biomacromolecules 18 1661 doi: 10.1021/acs.biomac.7b00364
    [10]
    Nomura K and Abdellatif M M 2010 Polymer 51 1861 doi: 10.1016/j.polymer.2010.02.028
    [11]
    Spiccia N D et al 2013 Synthesis 45 1683 doi: 10.1055/s-0033-1338478
    [12]
    Marx V M et al 2016 ChemInform 47 1 doi: 10.1002/chin.201628256
    [13]
    Shen X et al 2017 Nature 541 380 doi: 10.1038/nature20800
    [14]
    Wheeler P, Phillips J H and Pederson R L 2016 Org. Process Res. Dev. 20 1182 doi: 10.1021/acs.oprd.6b00138
    [15]
    Casey C P 2006 J. Chem. Educ. 83 192 doi: 10.1021/ed083p192
    [16]
    Mahmood J et al 2017 Nat. Nanotechnol. 12 441 doi: 10.1038/nnano.2016.304
    [17]
    Michel C and Gallezot P 2015 ACS Catal. 5 4130 doi: 10.1021/acscatal.5b00707
    [18]
    Sádaba I et al 2015 Green Chem. 17 4133 doi: 10.1039/C5GC00804B
    [19]
    Yang Q M et al 2018 ACS Omega 3 4199 doi: 10.1021/acsomega.8b00157
    [20]
    Zhang B et al 2017 ChemCatChem 9 3646 doi: 10.1002/cctc.201700664
    [21]
    Arends I W C E and Sheldon R A 2001 Appl. Catal. A General 212 175 doi: 10.1016/S0926-860X(00)00855-3
    [22]
    Harris D C 2016 A Quantitative Chemical Analysis9th ed New YorkW. H. Freeman & Company
    [23]
    Cremers D A and Radziemski L J 2013 Handbook of Laser-Induced Breakdown SpectroscopyChichesterWiley
    [24]
    Musazzi S E and Perini U 2014 Laser-Induced Breakdown Spectroscopy: Theory and ApplicationsBerlinSpringer
    [25]
    Singh J P and Thakur S N 2007 Laser-Induced Breakdown SpectroscopyAmsterdamElsevier
    [26]
    Khumaeni A et al 2016 Front. Phys. 11 114209 doi: 10.1007/s11467-016-0581-6
    [27]
    Konidala S K, Kamala G and Koralla S 2016 Res. J. Pharm. Technol. 9 91 doi: 10.5958/0974-360X.2016.00015.9
    [28]
    Li Y C et al 2018 Appl. Spectrosc. Rev. 53 1 doi: 10.1080/05704928.2017.1352509
    [29]
    Iqbal A et al 2017 Spectrochim. Acta B At. Spectrosc. 136 16 doi: 10.1016/j.sab.2017.07.008
    [30]
    Noll R A 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and ApplicationsBerlinSpringer
    [31]
    Chen S J et al 2017 J. Anal. At. Spectrom. 32 1508 doi: 10.1039/C7JA00046D
    [32]
    Wall M, Sun Z W and Alwahabi Z T 2016 Opt. Express 24 1507
    [33]
    Viljanen J, Sun Z W and Alwahabi Z T 2016 Spectrochim. Acta B At. Spectrosc. 118 29 doi: 10.1016/j.sab.2016.02.002
    [34]
    Cole-Hamilton D J E and Tooze R P E 2006 Catalyst Separation, Recovery and Recycling: Chemistry and Process DesignBerlinSpringer
    [35]
    Humphreys D 2019 Miner. Econ. 33 115 doi: 10.1007/s13563-019-00172-9
    [36]
    He Y G et al 2019 Appl. Opt. 58 422 doi: 10.1364/AO.58.000422
    [37]
    Ruas A et al 2017 Spectrochim. Acta B At. Spectrosc. 131 99 doi: 10.1016/j.sab.2017.03.014
    [38]
    Zhang D C et al 2018 Opt. Express 26 18794 doi: 10.1364/OE.26.018794
    [39]
    Nakanishi R et al 2021 Opt. Express 29 5205 doi: 10.1364/OE.415308
    [40]
    Kuwako A, Uchida Y and Maeda K 2003 Appl. Opt. 42 6052 doi: 10.1364/AO.42.006052
    [41]
    Balcerzak M 2002 Crit. Rev. Anal. Chem. 32 181 doi: 10.1080/10408340290765524
    [42]
    Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559 doi: 10.1063/1.1800011
    [43]
    Tognoni E and Cristoforetti G 2016 Opt. Laser Technol. 79 164 doi: 10.1016/j.optlastec.2015.12.010
    [44]
    Miller T A 1976 Annu. Rev. Phys. Chem. 27 127 doi: 10.1146/annurev.pc.27.100176.001015
    [45]
    Dieke G H and Crosswhite H M 1962 J. Quant. Spectrosc. Radiat. Transf. 2 97 doi: 10.1016/0022-4073(62)90061-4
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [4]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [7]A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.
  • Cited by

    Periodical cited type(2)

    1. Wei, Y., Chen, S., Wang, Y. et al. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques | [难 熔 金 属 及 金 属 碳 /氧 化 物 粉 体 制 备 技 术 研 究 进 展]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028719. DOI:10.7527/S1000-6893.2023.28719
    2. Zhu, H.-L., Li, X.-Y., Tong, H.-H. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma | [三维数值模拟射频热等离子体的物理场分布]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(15): 155202. DOI:10.7498/aps.70.20202135

    Other cited types(0)

Catalog

    Article views (89) PDF downloads (103) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return