Advanced Search+
Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733
Citation: Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733

Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy

More Information
  • Corresponding author:

    Zeyad T ALWAHABI, E-mail: zeyad.alwahabi@adelaide.edu.au

  • 1 The first two authors contributed equally to this work.

  • Received Date: December 15, 2021
  • Revised Date: April 10, 2022
  • Accepted Date: April 12, 2022
  • Available Online: December 10, 2023
  • Published Date: June 28, 2022
  • Aqueous ruthenium was detected in real-time under ambient conditions using microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). A 10 mJ laser energy and 750 W microwave power were directed at an open liquid jet sample of ruthenium. It was observed that, for liquid flow, the coupling efficiency between the microwave and the laser-induced plasma was limited to 43%. The improvement in the ruthenium's signal-to-noise ratio with MW-LIBS, with respect to LIBS, was 76-fold. Based on MW-LIBS, the limit of detection for aqueous ruthenium was determined to be 957±84 ppb.

  • [1]
    Emsley J 2011 Nature's Building Blocks: Everything You Need to Know About the Elements 2nd ed (Oxford: Oxford University Press)
    [2]
    McDonald D and Hunt L B 1982 A History of Platinum and its Allied Metals (London: Europa Publications)
    [3]
    Seddon E A and Seddon K R 1984 The Chemistry of Ruthenium (Amsterdam: Elsevier)
    [4]
    Li Q et al 2018 Chem. Eng. J. 333 505 doi: 10.1016/j.cej.2017.09.170
    [5]
    Moura A S et al 2017 Catalysts 7 47 doi: 10.3390/catal7020047
    [6]
    Naota T, Takaya H and Murahashi A I 1998 Chem. Rev. 98 2599 doi: 10.1021/cr9403695
    [7]
    Zieliński G K et al 2018 J. Org. Chem. 83 2542 doi: 10.1021/acs.joc.7b02468
    [8]
    Mol J C 2004 J. Mol. Catal. A Chem. 213 39 doi: 10.1016/j.molcata.2003.10.049
    [9]
    Dong Y F, Matson J B and Edgar K J 2017 Biomacromolecules 18 1661 doi: 10.1021/acs.biomac.7b00364
    [10]
    Nomura K and Abdellatif M M 2010 Polymer 51 1861 doi: 10.1016/j.polymer.2010.02.028
    [11]
    Spiccia N D et al 2013 Synthesis 45 1683 doi: 10.1055/s-0033-1338478
    [12]
    Marx V M et al 2016 ChemInform 47 1 doi: 10.1002/chin.201628256
    [13]
    Shen X et al 2017 Nature 541 380 doi: 10.1038/nature20800
    [14]
    Wheeler P, Phillips J H and Pederson R L 2016 Org. Process Res. Dev. 20 1182 doi: 10.1021/acs.oprd.6b00138
    [15]
    Casey C P 2006 J. Chem. Educ. 83 192 doi: 10.1021/ed083p192
    [16]
    Mahmood J et al 2017 Nat. Nanotechnol. 12 441 doi: 10.1038/nnano.2016.304
    [17]
    Michel C and Gallezot P 2015 ACS Catal. 5 4130 doi: 10.1021/acscatal.5b00707
    [18]
    Sádaba I et al 2015 Green Chem. 17 4133 doi: 10.1039/C5GC00804B
    [19]
    Yang Q M et al 2018 ACS Omega 3 4199 doi: 10.1021/acsomega.8b00157
    [20]
    Zhang B et al 2017 ChemCatChem 9 3646 doi: 10.1002/cctc.201700664
    [21]
    Arends I W C E and Sheldon R A 2001 Appl. Catal. A General 212 175 doi: 10.1016/S0926-860X(00)00855-3
    [22]
    Harris D C 2016 A Quantitative Chemical Analysis9th ed New YorkW. H. Freeman & Company
    [23]
    Cremers D A and Radziemski L J 2013 Handbook of Laser-Induced Breakdown SpectroscopyChichesterWiley
    [24]
    Musazzi S E and Perini U 2014 Laser-Induced Breakdown Spectroscopy: Theory and ApplicationsBerlinSpringer
    [25]
    Singh J P and Thakur S N 2007 Laser-Induced Breakdown SpectroscopyAmsterdamElsevier
    [26]
    Khumaeni A et al 2016 Front. Phys. 11 114209 doi: 10.1007/s11467-016-0581-6
    [27]
    Konidala S K, Kamala G and Koralla S 2016 Res. J. Pharm. Technol. 9 91 doi: 10.5958/0974-360X.2016.00015.9
    [28]
    Li Y C et al 2018 Appl. Spectrosc. Rev. 53 1 doi: 10.1080/05704928.2017.1352509
    [29]
    Iqbal A et al 2017 Spectrochim. Acta B At. Spectrosc. 136 16 doi: 10.1016/j.sab.2017.07.008
    [30]
    Noll R A 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and ApplicationsBerlinSpringer
    [31]
    Chen S J et al 2017 J. Anal. At. Spectrom. 32 1508 doi: 10.1039/C7JA00046D
    [32]
    Wall M, Sun Z W and Alwahabi Z T 2016 Opt. Express 24 1507
    [33]
    Viljanen J, Sun Z W and Alwahabi Z T 2016 Spectrochim. Acta B At. Spectrosc. 118 29 doi: 10.1016/j.sab.2016.02.002
    [34]
    Cole-Hamilton D J E and Tooze R P E 2006 Catalyst Separation, Recovery and Recycling: Chemistry and Process DesignBerlinSpringer
    [35]
    Humphreys D 2019 Miner. Econ. 33 115 doi: 10.1007/s13563-019-00172-9
    [36]
    He Y G et al 2019 Appl. Opt. 58 422 doi: 10.1364/AO.58.000422
    [37]
    Ruas A et al 2017 Spectrochim. Acta B At. Spectrosc. 131 99 doi: 10.1016/j.sab.2017.03.014
    [38]
    Zhang D C et al 2018 Opt. Express 26 18794 doi: 10.1364/OE.26.018794
    [39]
    Nakanishi R et al 2021 Opt. Express 29 5205 doi: 10.1364/OE.415308
    [40]
    Kuwako A, Uchida Y and Maeda K 2003 Appl. Opt. 42 6052 doi: 10.1364/AO.42.006052
    [41]
    Balcerzak M 2002 Crit. Rev. Anal. Chem. 32 181 doi: 10.1080/10408340290765524
    [42]
    Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559 doi: 10.1063/1.1800011
    [43]
    Tognoni E and Cristoforetti G 2016 Opt. Laser Technol. 79 164 doi: 10.1016/j.optlastec.2015.12.010
    [44]
    Miller T A 1976 Annu. Rev. Phys. Chem. 27 127 doi: 10.1146/annurev.pc.27.100176.001015
    [45]
    Dieke G H and Crosswhite H M 1962 J. Quant. Spectrosc. Radiat. Transf. 2 97 doi: 10.1016/0022-4073(62)90061-4
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(12)

    1. Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899
    2. Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf
    3. Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353
    4. Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397
    5. Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583
    6. Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235
    7. Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346
    8. Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822
    9. Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703
    10. Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609
    11. Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856
    12. Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070

    Other cited types(0)

Catalog

    Article views (89) PDF downloads (103) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return