Citation: | Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733 |
Aqueous ruthenium was detected in real-time under ambient conditions using microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). A 10 mJ laser energy and 750 W microwave power were directed at an open liquid jet sample of ruthenium. It was observed that, for liquid flow, the coupling efficiency between the microwave and the laser-induced plasma was limited to 43%. The improvement in the ruthenium's signal-to-noise ratio with MW-LIBS, with respect to LIBS, was 76-fold. Based on MW-LIBS, the limit of detection for aqueous ruthenium was determined to be 957±84 ppb.
[1] |
Emsley J 2011 Nature's Building Blocks: Everything You Need to Know About the Elements 2nd ed (Oxford: Oxford University Press)
|
[2] |
McDonald D and Hunt L B 1982 A History of Platinum and its Allied Metals (London: Europa Publications)
|
[3] |
Seddon E A and Seddon K R 1984 The Chemistry of Ruthenium (Amsterdam: Elsevier)
|
[4] |
Li Q et al 2018 Chem. Eng. J. 333 505 doi: 10.1016/j.cej.2017.09.170
|
[5] |
Moura A S et al 2017 Catalysts 7 47 doi: 10.3390/catal7020047
|
[6] |
Naota T, Takaya H and Murahashi A I 1998 Chem. Rev. 98 2599 doi: 10.1021/cr9403695
|
[7] |
Zieliński G K et al 2018 J. Org. Chem. 83 2542 doi: 10.1021/acs.joc.7b02468
|
[8] |
Mol J C 2004 J. Mol. Catal. A Chem. 213 39 doi: 10.1016/j.molcata.2003.10.049
|
[9] |
Dong Y F, Matson J B and Edgar K J 2017 Biomacromolecules 18 1661 doi: 10.1021/acs.biomac.7b00364
|
[10] |
Nomura K and Abdellatif M M 2010 Polymer 51 1861 doi: 10.1016/j.polymer.2010.02.028
|
[11] |
Spiccia N D et al 2013 Synthesis 45 1683 doi: 10.1055/s-0033-1338478
|
[12] |
Marx V M et al 2016 ChemInform 47 1 doi: 10.1002/chin.201628256
|
[13] |
Shen X et al 2017 Nature 541 380 doi: 10.1038/nature20800
|
[14] |
Wheeler P, Phillips J H and Pederson R L 2016 Org. Process Res. Dev. 20 1182 doi: 10.1021/acs.oprd.6b00138
|
[15] |
Casey C P 2006 J. Chem. Educ. 83 192 doi: 10.1021/ed083p192
|
[16] |
Mahmood J et al 2017 Nat. Nanotechnol. 12 441 doi: 10.1038/nnano.2016.304
|
[17] |
Michel C and Gallezot P 2015 ACS Catal. 5 4130 doi: 10.1021/acscatal.5b00707
|
[18] |
Sádaba I et al 2015 Green Chem. 17 4133 doi: 10.1039/C5GC00804B
|
[19] |
Yang Q M et al 2018 ACS Omega 3 4199 doi: 10.1021/acsomega.8b00157
|
[20] |
Zhang B et al 2017 ChemCatChem 9 3646 doi: 10.1002/cctc.201700664
|
[21] |
Arends I W C E and Sheldon R A 2001 Appl. Catal. A General 212 175 doi: 10.1016/S0926-860X(00)00855-3
|
[22] |
Harris D C 2016 A Quantitative Chemical Analysis9th ed New YorkW. H. Freeman & Company
|
[23] |
Cremers D A and Radziemski L J 2013 Handbook of Laser-Induced Breakdown SpectroscopyChichesterWiley
|
[24] |
Musazzi S E and Perini U 2014 Laser-Induced Breakdown Spectroscopy: Theory and ApplicationsBerlinSpringer
|
[25] |
Singh J P and Thakur S N 2007 Laser-Induced Breakdown SpectroscopyAmsterdamElsevier
|
[26] |
Khumaeni A et al 2016 Front. Phys. 11 114209 doi: 10.1007/s11467-016-0581-6
|
[27] |
Konidala S K, Kamala G and Koralla S 2016 Res. J. Pharm. Technol. 9 91 doi: 10.5958/0974-360X.2016.00015.9
|
[28] |
Li Y C et al 2018 Appl. Spectrosc. Rev. 53 1 doi: 10.1080/05704928.2017.1352509
|
[29] |
Iqbal A et al 2017 Spectrochim. Acta B At. Spectrosc. 136 16 doi: 10.1016/j.sab.2017.07.008
|
[30] |
Noll R A 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and ApplicationsBerlinSpringer
|
[31] |
Chen S J et al 2017 J. Anal. At. Spectrom. 32 1508 doi: 10.1039/C7JA00046D
|
[32] |
Wall M, Sun Z W and Alwahabi Z T 2016 Opt. Express 24 1507
|
[33] |
Viljanen J, Sun Z W and Alwahabi Z T 2016 Spectrochim. Acta B At. Spectrosc. 118 29 doi: 10.1016/j.sab.2016.02.002
|
[34] |
Cole-Hamilton D J E and Tooze R P E 2006 Catalyst Separation, Recovery and Recycling: Chemistry and Process DesignBerlinSpringer
|
[35] |
Humphreys D 2019 Miner. Econ. 33 115 doi: 10.1007/s13563-019-00172-9
|
[36] |
He Y G et al 2019 Appl. Opt. 58 422 doi: 10.1364/AO.58.000422
|
[37] |
Ruas A et al 2017 Spectrochim. Acta B At. Spectrosc. 131 99 doi: 10.1016/j.sab.2017.03.014
|
[38] |
Zhang D C et al 2018 Opt. Express 26 18794 doi: 10.1364/OE.26.018794
|
[39] |
Nakanishi R et al 2021 Opt. Express 29 5205 doi: 10.1364/OE.415308
|
[40] |
Kuwako A, Uchida Y and Maeda K 2003 Appl. Opt. 42 6052 doi: 10.1364/AO.42.006052
|
[41] |
Balcerzak M 2002 Crit. Rev. Anal. Chem. 32 181 doi: 10.1080/10408340290765524
|
[42] |
Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559 doi: 10.1063/1.1800011
|
[43] |
Tognoni E and Cristoforetti G 2016 Opt. Laser Technol. 79 164 doi: 10.1016/j.optlastec.2015.12.010
|
[44] |
Miller T A 1976 Annu. Rev. Phys. Chem. 27 127 doi: 10.1146/annurev.pc.27.100176.001015
|
[45] |
Dieke G H and Crosswhite H M 1962 J. Quant. Spectrosc. Radiat. Transf. 2 97 doi: 10.1016/0022-4073(62)90061-4
|
[1] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[2] | Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf |
[3] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[4] | ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09 |
[5] | TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16 |
[6] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |
[7] | FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16 |
[8] | F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565. |
1. | Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899 |
2. | Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf |
3. | Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353 |
4. | Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397 |
5. | Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583 |
6. | Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235 |
7. | Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346 |
8. | Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822 |
9. | Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703 |
10. | Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609 |
11. | Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856 |
12. | Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070 |