Citation: | Abu Farhan ABU KASIM, M A WAKIL, Kevin GRANT, Milton HEARN, Zeyad T ALWAHABI. Aqueous ruthenium detection by microwave-assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. DOI: 10.1088/2058-6272/ac6733 |
Aqueous ruthenium was detected in real-time under ambient conditions using microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). A 10 mJ laser energy and 750 W microwave power were directed at an open liquid jet sample of ruthenium. It was observed that, for liquid flow, the coupling efficiency between the microwave and the laser-induced plasma was limited to 43%. The improvement in the ruthenium's signal-to-noise ratio with MW-LIBS, with respect to LIBS, was 76-fold. Based on MW-LIBS, the limit of detection for aqueous ruthenium was determined to be 957±84 ppb.
[1] |
Emsley J 2011 Nature's Building Blocks: Everything You Need to Know About the Elements 2nd ed (Oxford: Oxford University Press)
|
[2] |
McDonald D and Hunt L B 1982 A History of Platinum and its Allied Metals (London: Europa Publications)
|
[3] |
Seddon E A and Seddon K R 1984 The Chemistry of Ruthenium (Amsterdam: Elsevier)
|
[4] |
Li Q et al 2018 Chem. Eng. J. 333 505 doi: 10.1016/j.cej.2017.09.170
|
[5] |
Moura A S et al 2017 Catalysts 7 47 doi: 10.3390/catal7020047
|
[6] |
Naota T, Takaya H and Murahashi A I 1998 Chem. Rev. 98 2599 doi: 10.1021/cr9403695
|
[7] |
Zieliński G K et al 2018 J. Org. Chem. 83 2542 doi: 10.1021/acs.joc.7b02468
|
[8] |
Mol J C 2004 J. Mol. Catal. A Chem. 213 39 doi: 10.1016/j.molcata.2003.10.049
|
[9] |
Dong Y F, Matson J B and Edgar K J 2017 Biomacromolecules 18 1661 doi: 10.1021/acs.biomac.7b00364
|
[10] |
Nomura K and Abdellatif M M 2010 Polymer 51 1861 doi: 10.1016/j.polymer.2010.02.028
|
[11] |
Spiccia N D et al 2013 Synthesis 45 1683 doi: 10.1055/s-0033-1338478
|
[12] |
Marx V M et al 2016 ChemInform 47 1 doi: 10.1002/chin.201628256
|
[13] |
Shen X et al 2017 Nature 541 380 doi: 10.1038/nature20800
|
[14] |
Wheeler P, Phillips J H and Pederson R L 2016 Org. Process Res. Dev. 20 1182 doi: 10.1021/acs.oprd.6b00138
|
[15] |
Casey C P 2006 J. Chem. Educ. 83 192 doi: 10.1021/ed083p192
|
[16] |
Mahmood J et al 2017 Nat. Nanotechnol. 12 441 doi: 10.1038/nnano.2016.304
|
[17] |
Michel C and Gallezot P 2015 ACS Catal. 5 4130 doi: 10.1021/acscatal.5b00707
|
[18] |
Sádaba I et al 2015 Green Chem. 17 4133 doi: 10.1039/C5GC00804B
|
[19] |
Yang Q M et al 2018 ACS Omega 3 4199 doi: 10.1021/acsomega.8b00157
|
[20] |
Zhang B et al 2017 ChemCatChem 9 3646 doi: 10.1002/cctc.201700664
|
[21] |
Arends I W C E and Sheldon R A 2001 Appl. Catal. A General 212 175 doi: 10.1016/S0926-860X(00)00855-3
|
[22] |
Harris D C 2016 A Quantitative Chemical Analysis9th ed New YorkW. H. Freeman & Company
|
[23] |
Cremers D A and Radziemski L J 2013 Handbook of Laser-Induced Breakdown SpectroscopyChichesterWiley
|
[24] |
Musazzi S E and Perini U 2014 Laser-Induced Breakdown Spectroscopy: Theory and ApplicationsBerlinSpringer
|
[25] |
Singh J P and Thakur S N 2007 Laser-Induced Breakdown SpectroscopyAmsterdamElsevier
|
[26] |
Khumaeni A et al 2016 Front. Phys. 11 114209 doi: 10.1007/s11467-016-0581-6
|
[27] |
Konidala S K, Kamala G and Koralla S 2016 Res. J. Pharm. Technol. 9 91 doi: 10.5958/0974-360X.2016.00015.9
|
[28] |
Li Y C et al 2018 Appl. Spectrosc. Rev. 53 1 doi: 10.1080/05704928.2017.1352509
|
[29] |
Iqbal A et al 2017 Spectrochim. Acta B At. Spectrosc. 136 16 doi: 10.1016/j.sab.2017.07.008
|
[30] |
Noll R A 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and ApplicationsBerlinSpringer
|
[31] |
Chen S J et al 2017 J. Anal. At. Spectrom. 32 1508 doi: 10.1039/C7JA00046D
|
[32] |
Wall M, Sun Z W and Alwahabi Z T 2016 Opt. Express 24 1507
|
[33] |
Viljanen J, Sun Z W and Alwahabi Z T 2016 Spectrochim. Acta B At. Spectrosc. 118 29 doi: 10.1016/j.sab.2016.02.002
|
[34] |
Cole-Hamilton D J E and Tooze R P E 2006 Catalyst Separation, Recovery and Recycling: Chemistry and Process DesignBerlinSpringer
|
[35] |
Humphreys D 2019 Miner. Econ. 33 115 doi: 10.1007/s13563-019-00172-9
|
[36] |
He Y G et al 2019 Appl. Opt. 58 422 doi: 10.1364/AO.58.000422
|
[37] |
Ruas A et al 2017 Spectrochim. Acta B At. Spectrosc. 131 99 doi: 10.1016/j.sab.2017.03.014
|
[38] |
Zhang D C et al 2018 Opt. Express 26 18794 doi: 10.1364/OE.26.018794
|
[39] |
Nakanishi R et al 2021 Opt. Express 29 5205 doi: 10.1364/OE.415308
|
[40] |
Kuwako A, Uchida Y and Maeda K 2003 Appl. Opt. 42 6052 doi: 10.1364/AO.42.006052
|
[41] |
Balcerzak M 2002 Crit. Rev. Anal. Chem. 32 181 doi: 10.1080/10408340290765524
|
[42] |
Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559 doi: 10.1063/1.1800011
|
[43] |
Tognoni E and Cristoforetti G 2016 Opt. Laser Technol. 79 164 doi: 10.1016/j.optlastec.2015.12.010
|
[44] |
Miller T A 1976 Annu. Rev. Phys. Chem. 27 127 doi: 10.1146/annurev.pc.27.100176.001015
|
[45] |
Dieke G H and Crosswhite H M 1962 J. Quant. Spectrosc. Radiat. Transf. 2 97 doi: 10.1016/0022-4073(62)90061-4
|
[1] | Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1 |
[2] | Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d |
[3] | Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403 |
[4] | WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19 |
[5] | SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01 |
[6] | WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07 |
[7] | A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12 |
[8] | M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09 |
[9] | YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14 |
[10] | HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580. |
1. | Wei, Y., Chen, S., Wang, Y. et al. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques | [难 熔 金 属 及 金 属 碳 /氧 化 物 粉 体 制 备 技 术 研 究 进 展]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028719. DOI:10.7527/S1000-6893.2023.28719 | |
2. | Zhu, H.-L., Li, X.-Y., Tong, H.-H. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma | [三维数值模拟射频热等离子体的物理场分布]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(15): 155202. DOI:10.7498/aps.70.20202135 |