Processing math: 100%
Advanced Search+
Mengmeng XU, Qiaofeng ZHANG, Jinlin XIE. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. DOI: 10.1088/2058-6272/ac6d43
Citation: Mengmeng XU, Qiaofeng ZHANG, Jinlin XIE. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. DOI: 10.1088/2058-6272/ac6d43

Design of Thomson scattering diagnostic system on linear magnetized plasma device

More Information
  • Author Bio:

    Jinlin XIE: E-mail: jlxie@ustc.edu.cn

  • Received Date: November 10, 2021
  • Revised Date: April 29, 2022
  • Accepted Date: May 04, 2022
  • Available Online: December 12, 2023
  • Published Date: June 13, 2022
  • In addition to the magnetic confinement fusion plasma, Thomson scattering has been applied to measure electron density and temperature of low-temperature plasmas. Based on a linear magnetized plasma device, a set of Thomson scattering diagnostic system is designed to diagnose the plasma with ne=10181019m-3 and Te=25 eV. Due to low plasma temperature and density, this diagnostic system needs high spectral resolution and collection efficiency to meet the requirements of electron velocity distribution function measurements. Through the bench test, it is confirmed that the spectral resolution reaches 0.01 nm, and theoretical collection efficiency is high enough to obtain a Thomson scattering spectrum by 1000 accumulations.

  • [1]
    Peacock N J et al 1969 Nature 224 488 doi: 10.1038/224488a0
    [2]
    Zang Q et al 2010 Plasma Sci. Technol. 12 144 doi: 10.1088/1009-0630/12/2/04
    [3]
    Hsieh C L et al 1988 Rev. Sci. Instrum. 59 1467 doi: 10.1063/1.1139690
    [4]
    Murmann H and Huang M 1985 Plasma Phys. Control. Fusion 27 103 doi: 10.1088/0741-3335/27/2/002
    [5]
    Yoshida H et al 1995 Rev. Sci. Instrum. 66 143 doi: 10.1063/1.1145247
    [6]
    Huang Y et al 2007 Rev. Sci. Instrum. 78 113501 doi: 10.1063/1.2804105
    [7]
    Muraoka K, Uchino K and Bowden M D 1998 Plasma Phys. Control. Fusion 40 1221 doi: 10.1088/0741-3335/40/7/002
    [8]
    Seo B H, You S J and Kim J H 2015 Jpn. J. Appl. Phys. 54 086102 doi: 10.7567/JJAP.54.086102
    [9]
    Carbone E A D et al 2012 J. Phys. D: Appl. Phys. 45 345203 doi: 10.1088/0022-3727/45/34/345203
    [10]
    Washeleski R L 2012 Laser Thomson scattering measurements of electron temperature and density in a Hall-effect plasma PhD Thesis Michigan Technological University (Horton, USA)
    [11]
    Fan F et al 2019 Chin. Phys. Lett. 36 015201 doi: 10.1088/0256-307X/36/1/015201
    [12]
    Huang C, Lu Q M and Wang S 2010 Phys. Plasmas 17 072306 doi: 10.1063/1.3457930
    [13]
    Hu G H et al 2016 Plasma Sci. Technol. 18 918 doi: 10.1088/1009-0630/18/9/08
    [14]
    Froula D H et al 2011 Plasma Scattering of Electromagnetic Radiation 2nd edn (Pittsburgh, PA: Academic)
    [15]
    Scannell R et al 2010 Rev. Sci. Instrum. 81 045107 doi: 10.1063/1.3374111
  • Related Articles

    [1]Borui ZHENG, Jianbo ZHANG, Shaojie QI, Jianghua XU, Yiche LI, Yuanzhong JIN, Dongliang BIAN. Spatiotemporal evolution laws of sector-shaped dielectric-barrier-discharge plasma actuator[J]. Plasma Science and Technology, 2024, 26(10): 105504. DOI: 10.1088/2058-6272/ad5d4f
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]D C SEOK, S R YOO, K I LEE, Y S CHOI, Y H JUNG. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science and Technology, 2019, 21(4): 45504-045504. DOI: 10.1088/2058-6272/aaf9e9
    [4]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [5]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [6]SHI Jiankui(史建魁), WANG Zheng(王铮), TAO Wei(陶伟), G. A. ZHEREBTSOV, E. B. ROMANOVA, K. G. RATOVSKY. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere[J]. Plasma Science and Technology, 2014, 16(9): 833-836. DOI: 10.1088/1009-0630/16/9/05
    [7]HE Yihua(贺艺华), ZHOU Qinghua(周庆华), YANG Chang(杨昶), ZHOU Xiaoping(周晓萍), LIU Si(刘斯), TANG Lijun(唐立军), XIAO Fuliang(肖伏良). Modeling the Evolution of Chorus Waves into Hiss Waves in the Magnetosphere[J]. Plasma Science and Technology, 2014, 16(7): 657-660. DOI: 10.1088/1009-0630/16/7/05
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [9]LI Yonggang (李永钢), ZHOU Wanghuai (周望怀), HUANG Liangfeng (黄良锋), NING Ronghui (宁荣辉), ZENG Zhi (曾雉)#, JU Xin (巨新). The Accumulation of He on a W Surface During keV-He Irradiation: Cluster Dynamics Modeling[J]. Plasma Science and Technology, 2012, 14(7): 624-628. DOI: 10.1088/1009-0630/14/7/13
    [10]JING Jia (景佳), PEI Xi (裴曦), WANG Dong (汪冬), CAO Ruifen(曹瑞芬), LIN Hui(林辉), WU Yican(吴宜灿), FDS Team. Leaf Sequencing Algorithm Based on MLC Shape Constraint[J]. Plasma Science and Technology, 2012, 14(6): 563-566. DOI: 10.1088/1009-0630/14/6/29

Catalog

    Article views (120) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return