Processing math: 100%
Advanced Search+
Mengmeng XU, Qiaofeng ZHANG, Jinlin XIE. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. DOI: 10.1088/2058-6272/ac6d43
Citation: Mengmeng XU, Qiaofeng ZHANG, Jinlin XIE. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. DOI: 10.1088/2058-6272/ac6d43

Design of Thomson scattering diagnostic system on linear magnetized plasma device

More Information
  • Author Bio:

    Jinlin XIE: E-mail: jlxie@ustc.edu.cn

  • Received Date: November 10, 2021
  • Revised Date: April 29, 2022
  • Accepted Date: May 04, 2022
  • Available Online: December 12, 2023
  • Published Date: June 13, 2022
  • In addition to the magnetic confinement fusion plasma, Thomson scattering has been applied to measure electron density and temperature of low-temperature plasmas. Based on a linear magnetized plasma device, a set of Thomson scattering diagnostic system is designed to diagnose the plasma with ne=10181019m-3 and Te=25 eV. Due to low plasma temperature and density, this diagnostic system needs high spectral resolution and collection efficiency to meet the requirements of electron velocity distribution function measurements. Through the bench test, it is confirmed that the spectral resolution reaches 0.01 nm, and theoretical collection efficiency is high enough to obtain a Thomson scattering spectrum by 1000 accumulations.

  • [1]
    Peacock N J et al 1969 Nature 224 488 doi: 10.1038/224488a0
    [2]
    Zang Q et al 2010 Plasma Sci. Technol. 12 144 doi: 10.1088/1009-0630/12/2/04
    [3]
    Hsieh C L et al 1988 Rev. Sci. Instrum. 59 1467 doi: 10.1063/1.1139690
    [4]
    Murmann H and Huang M 1985 Plasma Phys. Control. Fusion 27 103 doi: 10.1088/0741-3335/27/2/002
    [5]
    Yoshida H et al 1995 Rev. Sci. Instrum. 66 143 doi: 10.1063/1.1145247
    [6]
    Huang Y et al 2007 Rev. Sci. Instrum. 78 113501 doi: 10.1063/1.2804105
    [7]
    Muraoka K, Uchino K and Bowden M D 1998 Plasma Phys. Control. Fusion 40 1221 doi: 10.1088/0741-3335/40/7/002
    [8]
    Seo B H, You S J and Kim J H 2015 Jpn. J. Appl. Phys. 54 086102 doi: 10.7567/JJAP.54.086102
    [9]
    Carbone E A D et al 2012 J. Phys. D: Appl. Phys. 45 345203 doi: 10.1088/0022-3727/45/34/345203
    [10]
    Washeleski R L 2012 Laser Thomson scattering measurements of electron temperature and density in a Hall-effect plasma PhD Thesis Michigan Technological University (Horton, USA)
    [11]
    Fan F et al 2019 Chin. Phys. Lett. 36 015201 doi: 10.1088/0256-307X/36/1/015201
    [12]
    Huang C, Lu Q M and Wang S 2010 Phys. Plasmas 17 072306 doi: 10.1063/1.3457930
    [13]
    Hu G H et al 2016 Plasma Sci. Technol. 18 918 doi: 10.1088/1009-0630/18/9/08
    [14]
    Froula D H et al 2011 Plasma Scattering of Electromagnetic Radiation 2nd edn (Pittsburgh, PA: Academic)
    [15]
    Scannell R et al 2010 Rev. Sci. Instrum. 81 045107 doi: 10.1063/1.3374111
  • Related Articles

    [1]Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
    [2]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [3]Xiaoxing ZHANG (张晓星), Yuan TIAN (田远), Zhaolun CUI (崔兆仑), Ju TANG (唐炬). Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 55502-055502. DOI: 10.1088/2058-6272/ab65b2
    [4]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [5]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [6]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [7]YAN Shaojian(闫少健), TIAN Canxin(田灿鑫), HUANG Zhihong(黄志宏), YANG Bing(杨兵), FU Dejun(付德君). Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating[J]. Plasma Science and Technology, 2014, 16(10): 969-973. DOI: 10.1088/1009-0630/16/10/12
    [8]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Pang, Z., Zheng, H. et al. Electrical Properties of CF3SO2F Insulating Gas Based on Density Functional Theory. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(1): 297-303. DOI:10.1109/TDEI.2023.3308083
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    4. Li, L., Wang, B., Yi, C. et al. Factors and Underlying Mechanisms That Influence the Repetitive Breakdown Characteristics of Corona-Stabilized Switches. Applied Sciences (Switzerland), 2023, 13(17): 9518. DOI:10.3390/app13179518
    5. Ma, Y., Gao, G., Xiang, Y. et al. Research on the energy consumption mechanism and characteristics of the gallium indium tin liquid metal arcing process. Plasma Science and Technology, 2023, 25(9): 095502. DOI:10.1088/2058-6272/acc234
    6. Zhao, S., Wang, W., Qi, Z. et al. Partial Discharge Measurement of GIS With Damped AC (DAC) Voltage: Case Study for the Particle on Insulator. IEEE Transactions on Power Delivery, 2023, 38(3): 1665-1673. DOI:10.1109/TPWRD.2022.3223477

    Other cited types(0)

Catalog

    Article views (120) PDF downloads (69) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return