Citation: | Duixiong SUN, Yarui WANG, Maogen SU, Weiwei HAN, Chenzhong DONG. Improved sensitivity on detection of Cu and Cr in liquids using glow discharge technology assisted with LIBS[J]. Plasma Science and Technology, 2022, 24(8): 084008. DOI: 10.1088/2058-6272/ac7639 |
Laser-induced breakdown spectroscopy-assisted glow discharge (LIBS-GD) for analysis of elements in liquid was proposed, and it was applied to detect heavy metals in highly sensitive mixed solutions of Cu and Cr. During the experiments of GD and LIBS-GD, the experimental parameters have been optimized and the optimal voltage is 450 V, laser energy is 60 mJ, and the delay time is 4000 ns. Furthermore, the calibration curves of Cu and Cr under GD and LIBS-GD experiments have been established, and the limits of detection (LODs) of Cu and Cr were obtained with the method of GD and LIBS-GD, respectively. The LOD of Cu decreased from 3.37 (GD) to 0.16 mg l-1 (LIBS-GD), and Cr decreased from 3.15 to 0.34 mg l-1. The results prove that the capability of elemental detection under LIBS-GD has improved compared with the GD method. Therefore, LIBS-GD is expected to be developed into a highly sensitive method for sewage detection.
This work was supported by National Natural Science Foundation of China (Nos. 61965015, 11564037, and 161741513), the Industrial Support Program for Colleges of Gansu Province (No. 2020C-17), the Science and Technology Project of Gansu Province (No. 21JR7RA131), and the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (No. NWNU-LKQN2019-1).
[1] |
Leyval C, Turnau K and Haselwandter K 1997 Mycorrhiza 7 139 doi: 10.1007/s005720050174
|
[2] |
Kandeler E et al 2000 Biol. Fertil. Soils 32 390 doi: 10.1007/s003740000268
|
[3] |
Singh M et al 2015 J. Food Sci. Technol. 52 5299 doi: 10.1007/s13197-014-1538-9
|
[4] |
Pohl P et al 2021 Anal. Chem. Acta 1169 338399 doi: 10.1016/j.aca.2021.338399
|
[5] |
Płotka J et al 2013 J. Chromatogr. A 1307 1 doi: 10.1016/j.chroma.2013.07.099
|
[6] |
Guo Z J et al 2022 Sci. Total Environ. 806 150529 doi: 10.1016/j.scitotenv.2021.150529
|
[7] |
Bengtson A and Lundholm M 1988 J. Anal. At. Spectrom. 3 879 doi: 10.1039/ja9880300879
|
[8] |
Dalton C N and Glish G L 2003 Anal. Chem. 75 1620 doi: 10.1021/ac026087j
|
[9] |
Vogt H 1997 Electrochim. Acta 47 2695 doi: 10.1016/S0013-4686(97)00013-3
|
[10] |
Wang X Y, Zhou M H and Jin X L 2012 Electrochim. Acta 83 501 doi: 10.1016/j.electacta.2012.06.131
|
[11] |
Gou W et al 2007 Surf. Coat. Technol. 201 5043 doi: 10.1016/j.surfcoat.2006.07.199
|
[12] |
Tochikubo F et al 2014 Jpn. J. Appl. Phys. 53 126201 doi: 10.7567/JJAP.53.126201
|
[13] |
Wang J M et al 2019 Anal. Lett. 52 697 doi: 10.1080/00032719.2018.1487449
|
[14] |
Zhang P et al 2018 Geochim. Cosmochim. Acta 238 394 doi: 10.1016/j.gca.2018.07.018
|
[15] |
Peeters J et al 2014 J. Phys. Chem. A 118 8625 doi: 10.1021/jp5033146
|
[16] |
Fischer H et al 2019 Atmos. Chem. Phys. 19 11953 doi: 10.5194/acp-19-11953-2019
|
[17] |
György K et al 2012 Spectrochim. Acta Part B: At. Spectrosc. 77 52 doi: 10.1016/j.sab.2012.09.002
|
[18] |
Bencs L et al 2015 Spectrochim. Acta Part B: At. Spectrosc. 107 139 doi: 10.1016/j.sab.2015.03.003
|
[19] |
Jamroz P, Greda K and Pohl P 2012 TrAC, Trends Anal. Chem. 41 105 doi: 10.1016/j.trac.2012.09.002
|
[20] |
Cheng J et al 2019 Anal. Chim. Acta 1077 107 doi: 10.1016/j.aca.2019.06.003
|
[21] |
Manard B T et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 94–95 39 doi: 10.1016/j.sab.2014.03.004
|
[22] |
Xiao Q et al 2013 Talanta 106 144 doi: 10.1016/j.talanta.2012.12.013
|
[23] |
Yu X D et al 2014 Environ. Monit. Assess. 186 8969 doi: 10.1007/s10661-014-4058-1
|
[24] |
Knopp R, Scherbaum J F and Kim J I 1996 Fresenius J. Anal. Chem. 355 16 doi: 10.1007/s0021663550016
|
[25] |
Hussain T and Gondal M A 2008 Bull. Environ. Contam. Toxicol. 80 561 doi: 10.1007/s00128-008-9418-5
|
[26] |
Zhang Z et al 2014 Talanta 119 613 doi: 10.1016/j.talanta.2013.11.010
|
[27] |
Umebayashi Y, Miyamoto Y and Nishisaka T 1998 J. Jpn. Soc. Laser Surg. Med. 19 77 doi: 10.2530/jslsm1980.19.2_77
|
[28] |
Pan C Y et al 2013 Spectrosc. Spect. Anal. 33 3388
|
[29] |
Amaral M M et al 2009 Proc. SPIE 7391 73910I
|
[30] |
Lazic V and Jovićević S 2014 Spectrochim. Acta Part B: At. Spectrosc. 101 288 doi: 10.1016/j.sab.2014.09.006
|
[31] |
Zhong S L et al 2015 Plasma Sci. Technol. 17 979 doi: 10.1088/1009-0630/17/11/17
|
[32] |
Yu Y L, Zhou W D and Su X J 2014 Opt. Commun. 333 62 doi: 10.1016/j.optcom.2014.07.053
|
[33] |
Zhang D C et al 2018 Opt. Exp. 26 18794 doi: 10.1364/OE.26.018794
|
[34] |
Yu J et al 2016 Microchem. J. 128 325 doi: 10.1016/j.microc.2016.05.019
|
[35] |
Yu J et al 2018 Spectrochim. Acta Part B: At. Spectrosc. 145 64 doi: 10.1016/j.sab.2018.04.011
|
[36] |
De Vega C G et al 2015 Anal. Chim. Acta 877 33 doi: 10.1016/j.aca.2015.04.034
|
[37] |
Long G L and Winefordner J D 1983 Anal. Chem. 55 712A doi: 10.1021/ac00259a060
|
[1] | Yun LING, Dong DAI, Jiaxin CHANG, Buang WANG. Effect of liquid surface depression size on discharge characteristics and chemical distribution in the plasma-liquid anode system[J]. Plasma Science and Technology, 2024, 26(9): 094002. DOI: 10.1088/2058-6272/ad2b38 |
[2] | Yikang JIA, Tianhui LI, Rui ZHANG, Pengyu ZHAO, Zifeng WANG, Min CHEN, Li GUO, Dingxin LIU. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations[J]. Plasma Science and Technology, 2024, 26(1): 015502. DOI: 10.1088/2058-6272/ad0c1f |
[3] | Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4 |
[4] | Han XU, Shaoshuai GUO, Hao ZHANG, Kai XIE. Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet[J]. Plasma Science and Technology, 2022, 24(8): 085403. DOI: 10.1088/2058-6272/ac630d |
[5] | Sansan PENG (彭三三), Dehui XU (许德晖), Miao QI (祁苗), Rong LIU (刘蓉), Xinying ZHANG (张新颖), Huaiyan ZHANG (张怀延), Bolun PANG (庞波伦), Jin ZHANG (章金), Hao ZHANG (张浩), Zhijie LIU (刘志杰). Investigation of optimum discharge characteristics and chemical activity of AC driven air plasma jet and its anticancer effect[J]. Plasma Science and Technology, 2021, 23(12): 125401. DOI: 10.1088/2058-6272/ac2482 |
[6] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[7] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[8] | Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27 |
[9] | Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503 |
[10] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08 |
1. | Zhang, X., Ma, X., Li, M. et al. Preparation of nano-silver electromagnetic interference shielding functional coating on PC+ABS plastic via Ar/H2 mixed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2024, 21(3): 2300129. DOI:10.1002/ppap.202300129 |
2. | Xiang, H., Yue, X., Chu, Y. et al. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorganic Chemistry, 2024. DOI:10.1021/acs.inorgchem.4c03089 |
3. | Zeng, Z., Qiao, J., Zhang, R. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3(4): 582-607. DOI:10.1002/smm2.1118 |
4. | Chang, J., Zhai, H., Hu, Z. et al. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110269 |
5. | Zhou, Y., Zhang, J., Xia, G. et al. Preparation of N-doped graphite oxide for supercapacitors by NH3cold plasma. Plasma Science and Technology, 2022, 24(4): 044008. DOI:10.1088/2058-6272/ac48e0 |