Citation: | Xinwei CHEN, Jun GAO, Sanxiang YANG, Hai GENG, Ning GUO, Zuo GU, Juntai YANG, Hong ZHANG. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters[J]. Plasma Science and Technology, 2023, 25(1): 015504. DOI: 10.1088/2058-6272/ac7d42 |
Low-power Hall thruster (LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio. Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency, and to obtain the most optimal operating point, the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages (100–400 V) and anode mass flow rates (0.65 mg·s-1 and 0.95 mg·s-1). The experimental results indicated that the thruster has the most excellent performance in terms of thrust and efficiency etc at a channel length of 27 mm for identical operating conditions. In addition, particle in cell simulations, employed to reveal the underlying physical mechanisms, show that the ionization and acceleration zone is pushed downwards towards the channel exit as the anode moves towards the exit. At the identical operating point, when the channel length is reduced from 32 to 27 mm, the ionization and acceleration zone moves towards the exit, and the parameters such as thrust and efficiency increase due to the high ionization rate, ion number density, and axial electric field. When the channel length is further moved to 24 mm, the parameters in terms of thrust (F) and efficiency (
The authors are grateful to National Natural Science Foundation of China (No. 12005087), the Science and Technology Program of Gansu Province (Nos. 2006ZCTF0054, HTKJ2019KL510003, and 20JR10RA478).
[1] |
Choueiri E Y 2001 Phys. Plasmas 8 5025 doi: 10.1063/1.1409344
|
[2] |
Ding Y J et al 2019 Rev. Mod. Plasma Phys. 3 15 doi: 10.1007/s41614-019-0036-y
|
[3] |
Ding Y J et al 2017 Vacuum 143 251 doi: 10.1016/j.vacuum.2017.06.030
|
[4] |
Radtke J, Kebschull C and Stoll E 2017 Acta Astronaut. 131 55 doi: 10.1016/j.actaastro.2016.11.021
|
[5] |
Foust J 2019 IEEE Spectr. 56 50 doi: 10.1109/MSPEC.2019.8594798
|
[6] |
Mazouffre S and Grimaud L 2018 IEEE Trans. Plasma Sci. 46 330 doi: 10.1109/TPS.2017.2786402
|
[7] |
Conversano R W et al 2019 Plasma Sources Sci. Technol. 28 105011 doi: 10.1088/1361-6595/ab47de
|
[8] |
Garrigues L et al 2019 Plasma Sources Sci. Technol. 28 034003 doi: 10.1088/1361-6595/ab080d
|
[9] |
Hofer R R et al 2014 J. Appl. Phys. 115 043304 doi: 10.1063/1.4862314
|
[10] |
Mazouffre S, Tsikata S and Vaudolon J 2014 J. Appl. Phys. 116 243302 doi: 10.1063/1.4904965
|
[11] |
Vaudolon J et al 2015 Appl. Phys. Lett. 107 174103 doi: 10.1063/1.4932196
|
[12] |
Mazouffre S, Dannenmayer K and Blank C 2011 Phys. Plasmas 18 064501 doi: 10.1063/1.3592251
|
[13] |
Mikellides I G et al 2014 J. Appl. Phys. 115 043303 doi: 10.1063/1.4862313
|
[14] |
Mikellides I G et al 2014 J. Appl. Phys. 116 053302 doi: 10.1063/1.4892160
|
[15] |
Raitses Y, Ashkenazy J and Guelman M 1998 J. Propul. Power 14 247 doi: 10.2514/2.5274
|
[16] |
Raitses Y and Ashkenazy J 1996 Discharge characteristics of Hall current accelerators Proc. of the 17th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Berkeley, CA) (IEEE) 492
|
[17] |
Kronhaus I et al 2012 J. Phys. D: Appl. Phys. 45 175203 doi: 10.1088/0022-3727/45/17/175203
|
[18] |
Kronhaus I et al 2012 Plasma Sources Sci. Technol. 21 035005 doi: 10.1088/0963-0252/21/3/035005
|
[19] |
Kronhaus I et al 2013 J. Propul. Power 29 938 doi: 10.2514/1.B34754
|
[20] |
Courtney D G, Lozano P and Martínez-Sánchez M 2008 Continued investigation of diverging cusped field thruster Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford, CT) (AIAA) (https://doi.org/10.2514/6.2008-4631)
|
[21] |
Yuge S, Kuwamura Y and Tahara H 2007 Influences of magnetic field topography and discharge channel structure on performance of anode-layer hall thrusters Proc. of the 30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
|
[22] |
Gao Y Y et al 2017 Phys. Plasmas 24 063518 doi: 10.1063/1.4986091
|
[23] |
Zeng M et al 2020 AIP Adv. 10 085317 doi: 10.1063/5.0007348
|
[24] |
Cao X F et al 2018 Chin. Phys. B 27 085204 doi: 10.1088/1674-1056/27/8/085204
|
[25] |
Chen X W et al 2021 Plasma Sci. Technol. 23 104009 doi: 10.1088/2058-6272/ac15eb
|
[26] |
Chen X W et al 2021 Chin. Space Sci. Technol. 41 65 (in Chinese) doi: 10.1007/s11431-020-1718-4
|
[27] |
Zhang H, Li D T and Li H 2020 Rev. Sci. Instrum. 91 115104 doi: 10.1063/5.0027911
|
[28] |
Zhang H et al 2021 AIP Adv. 11 035006 doi: 10.1063/5.0041530
|
[29] |
Zhang Z et al 2021 Aerosp. Sci. Technol. 110 106480 doi: 10.1016/j.ast.2020.106480
|
[30] |
Brown D L and Gallimore A D 2010 Rev. Sci. Instrum. 81 063504 doi: 10.1063/1.3449541
|
[31] |
Brown D L et al 2016 J. Propul. Power 33 582 doi: 10.2514/1.B35696
|
[32] |
Li H et al 2019 Vacuum 162 78 doi: 10.1016/j.vacuum.2019.01.036
|
[33] |
Fan H T et al 2020 Vacuum 174 109193 doi: 10.1016/j.vacuum.2020.109193
|
[34] |
Qing S W et al 2013 Chin. Phys. B 22 085203 doi: 10.1088/1674-1056/22/8/085203
|
[1] | Jiajian ZHU, Le LI, Yifu TIAN, Minggang WAN, Mingbo SUN. Mutual effects between a gliding arc discharge and a premixed flame[J]. Plasma Science and Technology, 2024, 26(12): 125505. DOI: 10.1088/2058-6272/ad8120 |
[2] | Xiangmei LIU, Xiaotian DONG, Hongying LI, Shuxia ZHAO. The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges[J]. Plasma Science and Technology, 2022, 24(10): 105503. DOI: 10.1088/2058-6272/ac73e7 |
[3] | Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4 |
[4] | Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938 |
[5] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[6] | Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503 |
[7] | YAN Ying (燕颖), CAI Kaiyong (蔡开勇), YANG Weihu (杨维虎), LIU Peng (刘鹏). Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors[J]. Plasma Science and Technology, 2013, 15(7): 648-653. DOI: 10.1088/1009-0630/15/7/09 |
[8] | ZHANG Peng (张鹏), WANG Jun (王俊), SUN Yang (孙阳), DING Zejun (丁泽军). Charging Effect in Plasma Etching Mask of Hole Array[J]. Plasma Science and Technology, 2013, 15(6): 570-576. DOI: 10.1088/1009-0630/15/6/15 |
[9] | LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09 |
[10] | DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01 |
1. | Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318 | |
2. | Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76 | |
3. | Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088 | |
4. | SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019 | |
5. | Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f | |
6. | Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083 | |
7. | Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530 | |
8. | Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223 | |
9. | Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705 |