Processing math: 100%
Advanced Search+
Xinwei CHEN, Jun GAO, Sanxiang YANG, Hai GENG, Ning GUO, Zuo GU, Juntai YANG, Hong ZHANG. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters[J]. Plasma Science and Technology, 2023, 25(1): 015504. DOI: 10.1088/2058-6272/ac7d42
Citation: Xinwei CHEN, Jun GAO, Sanxiang YANG, Hai GENG, Ning GUO, Zuo GU, Juntai YANG, Hong ZHANG. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters[J]. Plasma Science and Technology, 2023, 25(1): 015504. DOI: 10.1088/2058-6272/ac7d42

Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters

More Information
  • Corresponding author:

    Sanxiang YANG, E-mail: yang369963@mail.dlut.edu.cn

  • Received Date: March 15, 2022
  • Revised Date: June 22, 2022
  • Accepted Date: June 28, 2022
  • Available Online: December 05, 2023
  • Published Date: October 30, 2022
  • Low-power Hall thruster (LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio. Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency, and to obtain the most optimal operating point, the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages (100–400 V) and anode mass flow rates (0.65 mg·s-1 and 0.95 mg·s-1). The experimental results indicated that the thruster has the most excellent performance in terms of thrust and efficiency etc at a channel length of 27 mm for identical operating conditions. In addition, particle in cell simulations, employed to reveal the underlying physical mechanisms, show that the ionization and acceleration zone is pushed downwards towards the channel exit as the anode moves towards the exit. At the identical operating point, when the channel length is reduced from 32 to 27 mm, the ionization and acceleration zone moves towards the exit, and the parameters such as thrust and efficiency increase due to the high ionization rate, ion number density, and axial electric field. When the channel length is further moved to 24 mm, the parameters in terms of thrust (F) and efficiency (ηa) are reduced as a result of the decreasing ionization efficiency (ηm) and the larger plume divergence angle (α). In this paper, the results indicated that an optimum anode position (L=27 mm) exists for the optimum performance.

  • The authors are grateful to National Natural Science Foundation of China (No. 12005087), the Science and Technology Program of Gansu Province (Nos. 2006ZCTF0054, HTKJ2019KL510003, and 20JR10RA478).

  • [1]
    Choueiri E Y 2001 Phys. Plasmas 8 5025 doi: 10.1063/1.1409344
    [2]
    Ding Y J et al 2019 Rev. Mod. Plasma Phys. 3 15 doi: 10.1007/s41614-019-0036-y
    [3]
    Ding Y J et al 2017 Vacuum 143 251 doi: 10.1016/j.vacuum.2017.06.030
    [4]
    Radtke J, Kebschull C and Stoll E 2017 Acta Astronaut. 131 55 doi: 10.1016/j.actaastro.2016.11.021
    [5]
    Foust J 2019 IEEE Spectr. 56 50 doi: 10.1109/MSPEC.2019.8594798
    [6]
    Mazouffre S and Grimaud L 2018 IEEE Trans. Plasma Sci. 46 330 doi: 10.1109/TPS.2017.2786402
    [7]
    Conversano R W et al 2019 Plasma Sources Sci. Technol. 28 105011 doi: 10.1088/1361-6595/ab47de
    [8]
    Garrigues L et al 2019 Plasma Sources Sci. Technol. 28 034003 doi: 10.1088/1361-6595/ab080d
    [9]
    Hofer R R et al 2014 J. Appl. Phys. 115 043304 doi: 10.1063/1.4862314
    [10]
    Mazouffre S, Tsikata S and Vaudolon J 2014 J. Appl. Phys. 116 243302 doi: 10.1063/1.4904965
    [11]
    Vaudolon J et al 2015 Appl. Phys. Lett. 107 174103 doi: 10.1063/1.4932196
    [12]
    Mazouffre S, Dannenmayer K and Blank C 2011 Phys. Plasmas 18 064501 doi: 10.1063/1.3592251
    [13]
    Mikellides I G et al 2014 J. Appl. Phys. 115 043303 doi: 10.1063/1.4862313
    [14]
    Mikellides I G et al 2014 J. Appl. Phys. 116 053302 doi: 10.1063/1.4892160
    [15]
    Raitses Y, Ashkenazy J and Guelman M 1998 J. Propul. Power 14 247 doi: 10.2514/2.5274
    [16]
    Raitses Y and Ashkenazy J 1996 Discharge characteristics of Hall current accelerators Proc. of the 17th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Berkeley, CA) (IEEE) 492
    [17]
    Kronhaus I et al 2012 J. Phys. D: Appl. Phys. 45 175203 doi: 10.1088/0022-3727/45/17/175203
    [18]
    Kronhaus I et al 2012 Plasma Sources Sci. Technol. 21 035005 doi: 10.1088/0963-0252/21/3/035005
    [19]
    Kronhaus I et al 2013 J. Propul. Power 29 938 doi: 10.2514/1.B34754
    [20]
    Courtney D G, Lozano P and Martínez-Sánchez M 2008 Continued investigation of diverging cusped field thruster Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford, CT) (AIAA) (https://doi.org/10.2514/6.2008-4631)
    [21]
    Yuge S, Kuwamura Y and Tahara H 2007 Influences of magnetic field topography and discharge channel structure on performance of anode-layer hall thrusters Proc. of the 30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
    [22]
    Gao Y Y et al 2017 Phys. Plasmas 24 063518 doi: 10.1063/1.4986091
    [23]
    Zeng M et al 2020 AIP Adv. 10 085317 doi: 10.1063/5.0007348
    [24]
    Cao X F et al 2018 Chin. Phys. B 27 085204 doi: 10.1088/1674-1056/27/8/085204
    [25]
    Chen X W et al 2021 Plasma Sci. Technol. 23 104009 doi: 10.1088/2058-6272/ac15eb
    [26]
    Chen X W et al 2021 Chin. Space Sci. Technol. 41 65 (in Chinese) doi: 10.1007/s11431-020-1718-4
    [27]
    Zhang H, Li D T and Li H 2020 Rev. Sci. Instrum. 91 115104 doi: 10.1063/5.0027911
    [28]
    Zhang H et al 2021 AIP Adv. 11 035006 doi: 10.1063/5.0041530
    [29]
    Zhang Z et al 2021 Aerosp. Sci. Technol. 110 106480 doi: 10.1016/j.ast.2020.106480
    [30]
    Brown D L and Gallimore A D 2010 Rev. Sci. Instrum. 81 063504 doi: 10.1063/1.3449541
    [31]
    Brown D L et al 2016 J. Propul. Power 33 582 doi: 10.2514/1.B35696
    [32]
    Li H et al 2019 Vacuum 162 78 doi: 10.1016/j.vacuum.2019.01.036
    [33]
    Fan H T et al 2020 Vacuum 174 109193 doi: 10.1016/j.vacuum.2020.109193
    [34]
    Qing S W et al 2013 Chin. Phys. B 22 085203 doi: 10.1088/1674-1056/22/8/085203
  • Related Articles

    [1]Borui ZHENG, Jianbo ZHANG, Shaojie QI, Jianghua XU, Yiche LI, Yuanzhong JIN, Dongliang BIAN. Spatiotemporal evolution laws of sector-shaped dielectric-barrier-discharge plasma actuator[J]. Plasma Science and Technology, 2024, 26(10): 105504. DOI: 10.1088/2058-6272/ad5d4f
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]D C SEOK, S R YOO, K I LEE, Y S CHOI, Y H JUNG. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science and Technology, 2019, 21(4): 45504-045504. DOI: 10.1088/2058-6272/aaf9e9
    [4]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [5]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [6]SHI Jiankui(史建魁), WANG Zheng(王铮), TAO Wei(陶伟), G. A. ZHEREBTSOV, E. B. ROMANOVA, K. G. RATOVSKY. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere[J]. Plasma Science and Technology, 2014, 16(9): 833-836. DOI: 10.1088/1009-0630/16/9/05
    [7]HE Yihua(贺艺华), ZHOU Qinghua(周庆华), YANG Chang(杨昶), ZHOU Xiaoping(周晓萍), LIU Si(刘斯), TANG Lijun(唐立军), XIAO Fuliang(肖伏良). Modeling the Evolution of Chorus Waves into Hiss Waves in the Magnetosphere[J]. Plasma Science and Technology, 2014, 16(7): 657-660. DOI: 10.1088/1009-0630/16/7/05
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [9]LI Yonggang (李永钢), ZHOU Wanghuai (周望怀), HUANG Liangfeng (黄良锋), NING Ronghui (宁荣辉), ZENG Zhi (曾雉)#, JU Xin (巨新). The Accumulation of He on a W Surface During keV-He Irradiation: Cluster Dynamics Modeling[J]. Plasma Science and Technology, 2012, 14(7): 624-628. DOI: 10.1088/1009-0630/14/7/13
    [10]JING Jia (景佳), PEI Xi (裴曦), WANG Dong (汪冬), CAO Ruifen(曹瑞芬), LIN Hui(林辉), WU Yican(吴宜灿), FDS Team. Leaf Sequencing Algorithm Based on MLC Shape Constraint[J]. Plasma Science and Technology, 2012, 14(6): 563-566. DOI: 10.1088/1009-0630/14/6/29

Catalog

    Figures(11)

    Article views (86) PDF downloads (94) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return