Advanced Search+
Haoxuan SI, Jiaqin DONG, Zhiheng FANG, Li JIANG, Shengzhen YI, Zhanshan WANG. High-resolution x-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal[J]. Plasma Science and Technology, 2023, 25(1): 015601. DOI: 10.1088/2058-6272/ac7e25
Citation: Haoxuan SI, Jiaqin DONG, Zhiheng FANG, Li JIANG, Shengzhen YI, Zhanshan WANG. High-resolution x-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal[J]. Plasma Science and Technology, 2023, 25(1): 015601. DOI: 10.1088/2058-6272/ac7e25

High-resolution x-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal

More Information
  • Corresponding author:

    Shengzhen YI, E-mail: 023123@tongji.edu.cn

    Zhanshan WANG, E-mail: wangzs@tongji.edu.cn

  • Received Date: May 03, 2022
  • Revised Date: July 01, 2022
  • Accepted Date: July 03, 2022
  • Available Online: December 05, 2023
  • Published Date: October 30, 2022
  • Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information. Large-field high-resolution monochromatic imaging of a He-like iron (Fe XXV) Kα characteristic line (6.701 keV) for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager. A high-index crystal orientation Ge ⟨531⟩ wafer with a Bragg angle of 75.37° and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence. A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed, and a spatial resolution of 3–7 μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm. The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5 μm using an online alignment method based on dual positioning balls to indicate the target and backlighter. This paper describes the optical design, adjustment method, and experimental results of a toroidal crystal system in a laboratory and laser facility.

  • This work is supported by National Natural Science Foundation of China (No. 11805212) and National Key Research and Development Program of China (No. 2019YFE03080200).

  • [1]
    Zylstra A B et al 2021 Phys. Rev. Lett. 126 025001 doi: 10.1103/PhysRevLett.126.025001
    [2]
    Zylstra A B et al 2022 Nature 601 542 doi: 10.1038/s41586-021-04281-w
    [3]
    Kritcher A L et al 2022 Nat. Phys. 18 251 doi: 10.1038/s41567-021-01485-9
    [4]
    Sinars D B et al 2020 Phys. Plasmas 27 070501 doi: 10.1063/5.0007476
    [5]
    Yi S Z et al 2016 Rev. Sci. Instrum. 87 103501 doi: 10.1063/1.4963702
    [6]
    Wang F et al 2020 Matter Radiat. Extremes 5 035201 doi: 10.1063/1.5129726
    [7]
    Reinke M L et al 2012 Rev. Sci. Instrum. 83 113504 doi: 10.1063/1.4758281
    [8]
    Aglitskiy Y et al 2008 Phys. Scr. T132 014021 doi: 10.1088/0031-8949/2008/T132/014021
    [9]
    Batani D et al 2019 J. Fusion Energy 38 299 doi: 10.1007/s10894-019-00218-4
    [10]
    Maslov M et al 2012 Rev. Sci. Instrum. 83 096106 doi: 10.1063/1.4755809
    [11]
    Le Pape S et al 2019 High Energy Dens. Phys. 31 13 doi: 10.1016/j.hedp.2019.01.002
    [12]
    Zhang W H et al 2012 Nucl. Electron. Detect. Technol. 32 1027(in Chinese) doi: 10.3969/j.issn.0258-0934.2012.09.008
    [13]
    Yi S Z et al 2022 J. Opt. Soc. Am. B 39 A61 doi: 10.1364/JOSAB.444438
    [14]
    Yi S Z et al 2022 Matter Radiat. Extremes 7 015902 doi: 10.1063/5.0062758
    [15]
    Yi S Z et al 2018 Rev. Sci. Instrum. 89 036105 doi: 10.1063/1.5019206
    [16]
    May M J et al 2018 Phys. Plasmas 25 056302 doi: 10.1063/1.5015927
    [17]
    Blue B E, Hansen J F and Robey H F 2004 Rev. Sci. Instrum. 75 3989 doi: 10.1063/1.1787936
    [18]
    Tommasini R et al 2017 Phys. Plasmas 24 053104 doi: 10.1063/1.4983137
    [19]
    Chen G J and Hong W 2020 Adv. Opt. Mater. 8 2000984 doi: 10.1002/adom.202000984
    [20]
    Yang X S et al 2018 Plasma Sci. Technol. 20 124001 doi: 10.1088/2058-6272/aad177
    [21]
    Morace A et al 2014 Phys. Plasmas 21 102712 doi: 10.1063/1.4900867
    [22]
    Cao N M, Valdivia A M M and Rice J E 2016 J. Vis. Exp. 114 54408 doi: 10.3791/54408
    [23]
    Bitter M et al 2004 Rev. Sci. Instrum. 75 3660 doi: 10.1063/1.1791747
    [24]
    Schollmeier M S and Loisel G P 2016 Rev. Sci. Instrum. 87 123511 doi: 10.1063/1.4972248
    [25]
    Schollmeier M S et al 2015 Appl. Opt. 54 5147 doi: 10.1364/AO.54.005147
    [26]
    Yao T et al 2021 Chin. J. Lasers 48 2103002(in Chinese) doi: 10.3788/CJL202148.2103002
    [27]
    Uschmann I et al 2000 Appl. Opt. 39 5865 doi: 10.1364/AO.39.005865
    [28]
    Jiang C L et al 2021 Opt. Express 29 6133 doi: 10.1364/OE.415537
    [29]
    Bitter M et al 2018 Rev. Sci. Instrum. 89 10F118 doi: 10.1063/1.5036806
    [30]
    Stoupin S et al 2021 Rev. Sci. Instrum. 92 053102 doi: 10.1063/5.0043685
    [31]
    Pisani F et al 1999 Rev. Sci. Instrum. 70 3314 doi: 10.1063/1.1149910
    [32]
    Yi S Z et al 2021 High Power Laser Sci. Eng. 9 E42 doi: 10.1017/hpl.2021.30
  • Related Articles

    [1]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [2]Xinshuai YANG (杨新帅), Ruiji HU (胡睿佶), Jun CHEN (陈俊), Fudi WANG (王福地), Jia FU (符佳), Yingying LI (李颖颖), Hongming ZHANG (张洪明), Yongcai SHEN (沈永才), Xianghui YIN (尹相辉), Bo LYU (吕波), EAST team. Measurement of impurity lines with two- crystal x-ray spectrometers on EAST[J]. Plasma Science and Technology, 2018, 20(12): 124001. DOI: 10.1088/2058-6272/aad177
    [3]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [4]WANG Baoqing (王保清), YI Tao (易涛), WANG Chuanke (王传珂), ZHU Xiaoli (朱效立), LI Tingshuai (李廷帅), LI Jin (李晋), LIU Shenye (刘慎业), JIANG Shaoen (江少恩), DING Yongkun (丁永坤). Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics[J]. Plasma Science and Technology, 2016, 18(7): 781-785. DOI: 10.1088/1009-0630/18/7/14
    [5]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [6]CHEN Zhaoxi (陈肇玺), HU Liqun (胡立群), CHENG Yong (程勇), LEI Mingzhun (雷明准), et al.. The Design and Test of a Be Window for the ITER Radial X-Ray Camera[J]. Plasma Science and Technology, 2013, 15(11): 1160-1164. DOI: 10.1088/1009-0630/15/11/15
    [7]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [8]T. Abdul KAREEM, A. Anu KALIANI. X-Ray Diffraction Study of Plasma Exposed and Annealed AlSb Bilayer Thin Film[J]. Plasma Science and Technology, 2013, 15(4): 382-385. DOI: 10.1088/1009-0630/15/4/13
    [9]LU Bo (吕波), SHI Yuejiang (石跃江), WANG Fudi (王福地), WAN Baonian (万宝年), Manfred BITTER, Kenneth W. HILL, Sang-gon LEE, LI Yingying (李颖颖), FU Jia (符佳), ZHANG Jizong (张继宗), XU Jingcui (徐经翠), SHEN Yongcai. Test of a High Throughput Detector on the X-ray Crystal Spectrometer of the EAST[J]. Plasma Science and Technology, 2013, 15(2): 97-100. DOI: 10.1088/1009-0630/15/2/03
    [10]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
  • Cited by

    Periodical cited type(7)

    1. Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4
    5. Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204

    Other cited types(0)

Catalog

    Figures(5)  /  Tables(1)

    Article views (107) PDF downloads (84) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return