Advanced Search+
Xueer ZHANG, Tianping ZHANG, Detian LI, Juanjuan CHEN, Yanhui JIA. Wide-range characteristics of beam perveance and saddle point potential of LIPS-200 ion thruster[J]. Plasma Science and Technology, 2022, 24(11): 115501. DOI: 10.1088/2058-6272/ac7fe4
Citation: Xueer ZHANG, Tianping ZHANG, Detian LI, Juanjuan CHEN, Yanhui JIA. Wide-range characteristics of beam perveance and saddle point potential of LIPS-200 ion thruster[J]. Plasma Science and Technology, 2022, 24(11): 115501. DOI: 10.1088/2058-6272/ac7fe4

Wide-range characteristics of beam perveance and saddle point potential of LIPS-200 ion thruster

More Information
  • Corresponding author:

    Detian LI, E-mail: lidetian@sina.com

  • Received Date: February 13, 2022
  • Revised Date: June 02, 2022
  • Accepted Date: July 07, 2022
  • Available Online: December 05, 2023
  • Published Date: August 21, 2022
  • Both the long-life and multi-mode versions of LIPS-200 ion thruster are under investigation in LIP (Lanzhou Institute of Physics). To confirm the feasible ranges of the beam current and accel (abbreviation for accelaration) grid potential to apply to the thruster, the wide-range beam perveance (the state of beam focus) and saddle point potential (the lowest potential along beamlet centerline) characteristics of LIPS-200 are studied with a test-verified PIC-MCC (Particle in Cell-Monte Carlo Collisions) model. These characteristics are investigated with both the initial and the eroded states of the accel grid aperture diameter. The results show that the feasible ranges of these parameters with respect to perveance/crossover (overfocused) limit extend as the operating time accumulates, while the feasible range of accel grid potential narrows due to a reduced EBSF (electron backstreaming failure) margin. The feasible ranges determined by the initial condition are: (ⅰ) the beam current up to 0.981 A, and (ⅱ) the accel grid potential up to -85 V. A 23% enlargement of the aperture diameter would bring up to 48 V of EBSF margin loss.

  • China Aerospace Science and Technology Corporation independent research and development projects (No. YF-ZZYF-2021-132).

  • [1]
    Zhang T P et al 2019 Aerosp. Shanghai 36 88 (in Chinese)
    [2]
    Sengupta A, Brophy J R and Goodfellow K D 2003 Status ofthe extended life test of the deep space 1 flight spare ionengine after 30 000 h of operation 39th AIAA/ASME/SAE/ ASEE Joint Propulsion Conf. and Exhibit (Huntsville, AL: AIAA) (https://doi.org/10.2514/6.2003-4558)
    [3]
    Yim J T et al 2017 Update of the NEXT ion thruster service life assessment with post-test correlation to the long duration test 35th Int. Electric Propulsion Conf. (Georgia) (Georgia Institute of Technology)
    [4]
    Wirz R E, Anderson J R and Katz I 2011 J. Propul. Power 27 211 doi: 10.2514/1.46845
    [5]
    Wirz R E et al 2011 J. Propul. Power 27 206 doi: 10.2514/1.46844
    [6]
    Polk J E et al 2019 Modeling ion optics erosion in the NEXT ion thruster using the CEX2D and CEX3D codes 36th Int. Electric Propulsion Conf. (Vienna) (Electric Rocket Propulsion Society)
    [7]
    Wilbur P J et al 2001 A study of high specific impulse ion thruster optics Int. Electric Propulsion Conf. (Geneva: IEPC)
    [8]
    Emho J W et al 2005 Perveance and beamlet expansion modeling of the NEXT ion engine Presented at the 29th Int. Electric Propulsion Conf. (Princeton, NJ) (Princeton University)
    [9]
    Yim J T et al 2019 Uncertainty quantification of modeled electron backstreaming failure for the NEXT ion thruster Presented at the 36th Int. Electric Propulsion Conf. (Vienna) (University of Vienna)
    [10]
    Goebel D M et al 2008 Qualification of commercial XIPS ion thrusters for NASA deep space missions Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford, CT) (AIAA) (https://doi.org/10.2514/6.2008-4914)
    [11]
    Jia Y H et al 2012 J. Propul. Technol. 33 991 (in Chinese)
    [12]
    Chen J J et al 2016 Plasma Sci. Technol. 18 611 doi: 10.1088/1009-0630/18/6/06
    [13]
    Long J F and Wen X D 2019 J. Vac. Sci. Technol. B 37 012905 doi: 10.1116/1.5051810
    [14]
    Jia Y H et al 2018 Plasma Sci. Technol. 20 105502 doi: 10.1088/2058-6272/aace52
    [15]
    Chen J J et al 2015 Chin. Space Sci. Technol. 35 70 (in Chinese) doi: 10.3780/j.issn.1000-758X.2015.02.010
    [16]
    Zhao Y D et al 2020 J. Propul. Technol. 41 187 (in Chinese) doi: 10.13675/j.cnki.tjjs.190357
    [17]
    Zhao Y D et al 2018 J. Propul. Technol. 39 942 (in Chinese)
    [18]
    Sun M M et al 2019 J. Propul. Technol. 40 472 (in Chinese) doi: 10.13675/j.cnki.tjjs.180142
    [19]
    Jia Y H et al 2020 J. Propul. Technol. 41 140 (in Chinese) doi: 10.13675/j.cnki.tjjs.190337
    [20]
    Lu C et al 2020 Acta Astronaut. 177 217 doi: 10.1016/j.actaastro.2020.07.026
    [21]
    Lu C et al 2020 Comput. Methods Appl. Mech. Eng. 372 113345 doi: 10.1016/j.cma.2020.113345
    [22]
    Lu C et al 2021 Chin. J. Aeronaut. 34 79 doi: 10.1016/j.cja.2020.10.026
    [23]
    Lu C et al 2020 Int. J. Numer. Methods Eng. 121 2107 doi: 10.1002/nme.6301
    [24]
    Lu C et al 2018 IEEE Trans. Plasma Sci. 46 4065 doi: 10.1109/TPS.2018.2865600
    [25]
    Lu C et al 2019 Int. J. Aerosp. Eng. 2019 8916303 doi: 10.1155/2019/8916303
    [26]
    Zhang T P et al 2015 7500 h life test of the QM LIPS-200 ion thruster IEPC 2015-133 Proc. 34th Int. Electric Propulsion Conf. and 6th Nano-satellite Symp. (Hyogo-Kobe) (IEPC)
    [27]
    Zhang X E, Zhang T P and Li D T 2022 J. Astronaut. 43 214 (in Chinese) doi: 10.3873/j.issn.1000-1328.2022.02.010
    [28]
    Zhang X E et al 2022 Ion optics lifetime optimization for ion thruster J. Propul. Technol. 43 (9) in press (in Chinese)
    [29]
    Zheng M F et al 2015 J. Propul. Technol. 36 1116 (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.07.021
    [30]
    Zhang X E, Zhang T P and Li D T 2020 J. Rocket Propul. 46 73 (in Chinese)
    [31]
    Jia Y H 2012 Service life analysis and assessment for LIPS- 200 ion thruster PhD Thesis Lanzhou Institute of Physics, Gansu, China (in Chinese)
    [32]
    Farnell C C 2007 Performance and lifetime simulation of ion thruster optics PhD Thesis Colorado State University, Colorado, USA
    [33]
    Williams J D, Goebel D M and Wilbur P J 2003 Analytical model of electron backstreaming for ion thrusters Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Huntsville, AL) (AIAA) (https://doi.org/10.2514/6.2003-4560)
  • Related Articles

    [1]Chao Zhong, Hong Li, Shuo Hu, Daren Yu. Study on the relation between magnetic field gradient and operating range of flow rate for Hall thrusters[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adadb9
    [2]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [3]Chen YUAN (袁晨), Jun WU (吴军), Zejie YIN (阴泽杰). A digital wide range neutron flux measuring system for HL-2A[J]. Plasma Science and Technology, 2017, 19(8): 84004-084004. DOI: 10.1088/2058-6272/aa6bf1
    [4]Rong CHEN (陈绒), Jianhua YANG (杨建华), Xinbing CHENG (程新兵), Zilong PAN (潘子龙). Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator[J]. Plasma Science and Technology, 2017, 19(6): 64014-064014. DOI: 10.1088/2058-6272/aa6155
    [5]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [6]REN Junxue(任军学), John L. POLANSKY, Joseph WANG. Analysis of the Anomalous Phenomenon in the Retarding Potential Analyzer Measurements[J]. Plasma Science and Technology, 2014, 16(11): 1042-1049. DOI: 10.1088/1009-0630/16/11/08
    [7]ZHOU Hangyu(周航宇), CUI Zhengying(崔正英), MORITA Shigeru(森田繁), FU Bingzhong(傅炳忠), GOTO Motoshi(後藤基志), SUN Ping(孙平), FENG Beibin(冯北滨), CUI Xuewu(崔学武), LU Ping(卢平), YANG Qingwei(杨青巍), DUAN Xuru(段旭如). Spectral Analysis in EUV Range for Study of Core Impurity Behavior in HL-2A[J]. Plasma Science and Technology, 2014, 16(2): 89-92. DOI: 10.1088/1009-0630/16/2/01
    [8]Jongho SEON, Ensang LEE. Plasma Wall Potentials with Secondary Electron Emissions up to the Stable Space-Charge-Limited Condition[J]. Plasma Science and Technology, 2013, 15(11): 1093-1099. DOI: 10.1088/1009-0630/15/11/03
    [9]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [10]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15

Catalog

    Figures(20)  /  Tables(1)

    Article views (139) PDF downloads (99) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return