Citation: | Xu LI, Shaohui JIN, Ke SONG, Lanlan NIE, Dawei LIU, Xinpei LU. Temporal electric field of a helium plasma jet by electric field induced second harmonic (E-FISH) method[J]. Plasma Science and Technology, 2023, 25(1): 015402. DOI: 10.1088/2058-6272/ac8419 |
Electric field is an important parameter of plasma, which is related to electron temperature, electron density, excited species density, and so on. In this work, the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic (E-FISH) method, and the time-resolved electric field under different conditions is investigated. When positive pulse voltage is applied, the electric field has a peak of about 25 kV cm−1 at the rising edge of the voltage pulse. A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm−1. On the other hand, when negative pulse voltage is applied, the electric field has a peak of −16 kV cm−1 when the negative voltage is increased to −8 kV. A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about −6 kV cm−1. When the pulse rising time increases from 60 to 200 ns, the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly. When 0.5% of oxygen is added to the main working gas helium, the peak electric field at the rising edge is only about 15 kV cm−1. On the other hand, when 0.5% nitrogen is added, the peak electric field increases especially at the falling edge of the voltage pulse, where it increases reversely from −12 to −16 kV cm−1 (the minus sign only represents the direction of electric field).
This work was supported by National Key Research and Development Program of China (No. 2021YFE0114700) and National Natural Science Foundation of China (Nos. 52130701 and 51977096).
[1] |
Lu X et al 2014 Phys. Rep. 540 123 doi: 10.1016/j.physrep.2014.02.006
|
[2] |
Kim G C et al 2009 J. Phys. D: Appl. Phys. 42 032005 doi: 10.1088/0022-3727/42/3/032005
|
[3] |
Lu X et al 2016 Phys. Rep. 630 1 doi: 10.1016/j.physrep.2016.03.003
|
[4] |
Lu X P et al 2008 Appl. Phys. Lett. 92 151504 doi: 10.1063/1.2912524
|
[5] |
Wang R X et al 2019 J. Phys. D: Appl. Phys. 52 074002 doi: 10.1088/1361-6463/aaf4c8
|
[6] |
Laroussi M and Lu X 2005 Appl. Phys. Lett. 87 113902 doi: 10.1063/1.2045549
|
[7] |
Reuter S et al 2009 Plasma Sources Sci. Technol. 18 015006 doi: 10.1088/0963-0252/18/1/015006
|
[8] |
Bernhardt T et al 2019 Oxid. Med. Cell. Longevity 2019 3873928 doi: 10.1155/2019/3873928
|
[9] |
Shashurin A et al 2008 Appl. Phys. Lett. 93 181501 doi: 10.1063/1.3020223
|
[10] |
Deng X L et al 2013 J. Appl. Phys. 113 023305 doi: 10.1063/1.4774328
|
[11] |
Gao J et al 2019 Int. Wound J. 16 1103 doi: 10.1111/iwj.13161
|
[12] |
Von Woedtke T et al 2013 Phys. Rep. 530 291 doi: 10.1016/j.physrep.2013.05.005
|
[13] |
Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001 doi: 10.1088/0022-3727/45/26/263001
|
[14] |
Laroussi M 2009 IEEE Trans. Plasma Sci. 37 714 doi: 10.1109/TPS.2009.2017267
|
[15] |
Lee H W et al 2010 Plasma Process. Polym. 7 274 doi: 10.1002/ppap.200900083
|
[16] |
Sarron V et al 2011 IEEE Trans. Plasma Sci. 39 2356 doi: 10.1109/TPS.2011.2155099
|
[17] |
Lu X P et al 2008 J. Appl. Phys. 104 053309 doi: 10.1063/1.2977674
|
[18] |
Robert E et al 2015 Phys. Plasmas 22 122007 doi: 10.1063/1.4934655
|
[19] |
Duan J W et al 2020 Plasma Process. Polym. 17 2000005 doi: 10.1002/ppap.202000005
|
[20] |
Raizer Y P 1991 Gas Discharge Physics (New York: Springer)
|
[21] |
Lietz A M and Kushner M J 2018 J. Appl. Phys. 124 153303 doi: 10.1063/1.5049430
|
[22] |
Naidis G V and Babaeva N Y 2020 High Volt. 5 650 doi: 10.1049/hve.2020.0065
|
[23] |
Sretenovic G B et al 2014 J. Phys. D: Appl. Phys. 47 102001 doi: 10.1088/0022-3727/47/10/102001
|
[24] |
Kovačević V V et al 2018 J. Phys. D: Appl. Phys. 51 065202 doi: 10.1088/1361-6463/aaa288
|
[25] |
Sretenovic G B et al 2011 Appl. Phys. Lett. 99 161502 doi: 10.1063/1.3653474
|
[26] |
Goldberg B M et al 2018 Appl. Phys. Lett. 112 064102 doi: 10.1063/1.5019173
|
[27] |
Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001 doi: 10.1088/1361-6595/ab7854
|
[28] |
Huang B D et al 2021 High Volt. 6 665 doi: 10.1049/hve2.12067
|
[29] |
Cui Y Z, Zhuang C J and Zeng R 2019 Appl. Phys. Lett. 115 244101 doi: 10.1063/1.5129778
|
[30] |
Orr K et al 2020 Plasma Sources Sci. Technol. 29 035019 doi: 10.1088/1361-6595/ab6e5b
|
[31] |
Bigio I J, Finn R S and Ward J F 1975 Appl. Opt. 14 336 doi: 10.1364/AO.14.000336
|
[32] |
Finn R S and Ward J F 1974 J. Chem. Phys. 60 454 doi: 10.1063/1.1681062
|
[33] |
Chng T L, Starikovskaia S M and Schanne-Klein M C 2020 Plasma Sources Sci. Technol. 29 125002 doi: 10.1088/1361-6595/abbf93
|
[34] |
Luque A, Ratushnaya V and Ebert U 2008 J. Phys. D: Appl. Phys. 41 234005 doi: 10.1088/0022-3727/41/23/234005
|
[35] |
Naidis G V 2011 Appl. Phys. Lett. 98 141501 doi: 10.1063/1.3576940
|
[36] |
Xiong Z et al 2010 J. Appl. Phys. 108 103303 doi: 10.1063/1.3511448
|
[37] |
Jiang C, Chen M T and Gundersen M A 2009 J. Phys. D: Appl. Phys. 42 232002 doi: 10.1088/0022-3727/42/23/232002
|
[38] |
Simeni M S et al 2018 Plasma Sources Sci. Technol. 27 015011 doi: 10.1088/1361-6595/aaa06e
|
[39] |
Park G et al 2008 Plasma Process. Polym. 5 569 doi: 10.1002/ppap.200800019
|
[40] |
Joh H M et al 2014 Sci. Rep. 4 6638 doi: 10.1038/srep06638
|
[41] |
Van Gessel A F H, Alards K M J and Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 265202 doi: 10.1088/0022-3727/46/26/265202
|
[42] |
Chng T L et al 2022 Plasma Sources Sci. Technol. 31 015010 doi: 10.1088/1361-6595/ac4592
|
[1] | Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18 |
[2] | Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63 |
[3] | Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383 |
[4] | Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06 |
[5] | Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62 |
[6] | K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601 |
[7] | ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14 |
[8] | ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11 |
[9] | QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14 |
[10] | CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01 |
1. | Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301 |
2. | Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130 |
3. | An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827 |
4. | Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343 |
5. | Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762 |
6. | Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559 |
7. | Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410 |
8. | An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091 |
9. | Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113 |
10. | Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871 |
11. | Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880 |
12. | An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8 |
13. | Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de |