Citation: | Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e |
The spectrum effect on the penetration of resonant magnetic perturbation (RMP) is studied with upgraded in-vessel RMP coils on J-TEXT. The poloidal spectrum of the RMP field, especially the amplitudes of 2/1 and 3/1 components, can be varied by the phase difference between the upper and lower coil rows, ∆ϕ = ϕtop-ϕbottom, where ϕtop and ϕbottom are the toroidal phases of the n = 1 field of each coil row. The type of RMP penetration is found to be related to ∆ϕ, including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP. For cases with penetration of only one RMP component, the penetration thresholds measured by the corresponding resonant component are close for various ∆ϕ. However, the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance. The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.
This work was supported by the National Magnetic Confinement Fusion Energy R & D Program of China (Nos. 2019YFE03010004, 2018YFE0309100), the National Key R & D Program of China (No. 2017YFE0301100) and National Natural Science Foundation of China (Nos. 11905078, 12075096 and 51821005).
[1] |
Scoville J T et al 1991 Nucl. Fusion 31 875 doi: 10.1088/0029-5515/31/5/006
|
[2] |
Hender T C et al 1992 Nucl. Fusion 32 2091 doi: 10.1088/0029-5515/32/12/I02
|
[3] |
Snipes J A et al 1988 Nucl. Fusion 28 1085 doi: 10.1088/0029-5515/28/6/010
|
[4] |
Garofalo A M et al 2000 Nucl. Fusion 40 1491 doi: 10.1088/0029-5515/40/8/307
|
[5] |
Evens T E et al 2004 Phys. Rev. Lett. 92 235003 doi: 10.1103/PhysRevLett.92.235003
|
[6] |
Evens T E et al 2006 Nat. Phys. 2 419 doi: 10.1038/nphys312
|
[7] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[8] |
Tetsuya S and Takaya H 1979 Phys. Fluids 22 1189 doi: 10.1063/1.862721
|
[9] |
Nazikian R et al 2015 Phys. Rev. Lett. 114 105002 doi: 10.1103/PhysRevLett.114.105002
|
[10] |
Sun Y et al 2016 Phys. Rev. Lett. 117 115001 doi: 10.1103/PhysRevLett.117.115001
|
[11] |
Hu Q et al 2020 Phys. Rev. Lett. 125 045001 doi: 10.1103/PhysRevLett.125.045001
|
[12] |
Buttery R J et al 1999 Nucl. Fusion 39 1827 doi: 10.1088/0029-5515/39/11Y/323
|
[13] |
Boozer A H 2011 Fusion Sci. Technol. 59 561 doi: 10.13182/FST11-A11697
|
[14] |
Callen J D 2011 Nucl. Fusion 51 094026 doi: 10.1088/0029-5515/51/9/094026
|
[15] |
Strait E J 2015 Phys. Plasmas 22 021803 doi: 10.1063/1.4902126
|
[16] |
Park J K et al 2007 Phys. Rev. Lett. 99 195003 doi: 10.1103/PhysRevLett.99.195003
|
[17] |
Park J K et al 2008 Nucl. Fusion 48 045006 doi: 10.1088/0029-5515/48/4/045006
|
[18] |
Reimerdes H et al 2009 Nucl. Fusion 49 115001 doi: 10.1088/0029-5515/49/11/115001
|
[19] |
Paz-Soldan C et al 2015 Phys. Rev. Lett. 114 105001 doi: 10.1103/PhysRevLett.114.105001
|
[20] |
Park J K et al 2018 Nat. Phys. 14 1223 doi: 10.1038/s41567-018-0268-8
|
[21] |
Park J K et al 2021 Phys. Rev. Lett. 126 125001 doi: 10.1103/PhysRevLett.126.125001
|
[22] |
Logan N C et al 2021 Nucl. Fusion 61 076010 doi: 10.1088/1741-4326/abff05
|
[23] |
Scoville J T and La Haye R J 2003 Nucl. Fusion 43 250 doi: 10.1088/0029-5515/43/4/305
|
[24] |
Wang H H et al 2016 Nucl. Fusion 56 066011 doi: 10.1088/0029-5515/56/6/066011
|
[25] |
Cole A J et al 2007 Phys. Rev. Lett. 99 065001 doi: 10.1103/PhysRevLett.99.065001
|
[26] |
Yang S M et al 2019 Phys. Rev. Lett. 123 095001 doi: 10.1103/PhysRevLett.123.095001
|
[27] |
Ren J et al 2021 Nucl. Fusion 61 056007 doi: 10.1088/1741-4326/abea57
|
[28] |
Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
|
[29] |
Hu Q et al 2013 Phys. Plasmas 20 092502 doi: 10.1063/1.4820800
|
[30] |
Wang N et al 2014 Nucl. Fusion 54 064014 doi: 10.1088/0029-5515/54/6/064014
|
[31] |
Hu Q et al 2016 Nucl. Fusion 56 092009 doi: 10.1088/0029-5515/56/9/092009
|
[32] |
Huang Z et al 2020 Nucl. Fusion 60 064003 doi: 10.1088/1741-4326/ab8859
|
[33] |
Wang N et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
|
[34] |
Rao B et al 2014 Fusion Eng. Des. 89 378 doi: 10.1016/j.fusengdes.2014.03.038
|
[35] |
Wang N et al 2022 Rev. Modern Plasma Phys. 6 26
|
[36] |
Ren Z et al 2022 Plasma Sci. Technol Doi: 10.1088/2058-6272/aca45f
|
[37] |
Liu L Z et al 2019 Nucl. Fusion 59 126022 doi: 10.1088/1741-4326/ab4090
|
[38] |
Chen J et al 2014 Rev. Sci. Instrum. 85 11D303 doi: 10.1063/1.4891603
|
[39] |
Yang Z J et al 2012 Rev. Sci. Instrum. 83 10E313 doi: 10.1063/1.4732069
|
[40] |
Cheng Z F et al 2013 Rev. Sci. Instrum. 84 073508 doi: 10.1063/1.4815824
|
[41] |
Han D L et al 2021 Plasma Sci. Technol. 23 055104 doi: 10.1088/2058-6272/abeeda
|
[42] |
Wang Y H et al 2022 Plasma Sci. Technol. 24 064001 doi: 10.1088/2058-6272/ac64ef
|
[43] |
Liu L Z et al 2015 Plasma Phys. Control. Fusion 57 065007 doi: 10.1088/0741-3335/57/6/065007
|
[44] |
Yan W et al 2018 Plasma Phys. Control. Fusion 60 035007 doi: 10.1088/1361-6587/aa9c14
|
[45] |
Buratti P et al 2005 Nucl. Fusion 45 1446 doi: 10.1088/0029-5515/45/11/027
|
[46] |
Chen W et al 2011 Nucl. Fusion 51 063010 doi: 10.1088/0029-5515/51/6/063010
|
[47] |
Du X D et al 2019 Phys. Plasmas 26 042505 doi: 10.1063/1.5085329
|
[48] |
Hu Q et al 2019 Nucl. Fusion 59 016005 doi: 10.1088/1741-4326/aaeb57
|
[49] |
Liu Y Q et al 2010 Phys. Plasmas 17 122502 doi: 10.1063/1.3526677
|
[1] | Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c |
[2] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[3] | Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8 |
[4] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[5] | Yanliang PEI (裴彦良), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Hui YAN (严辉), Xinlei ZHU (朱鑫磊), Zhen LIU (刘振), Keping YAN (闫克平). Discharge electrode configuration effects on the performance of a plasma sparker[J]. Plasma Science and Technology, 2017, 19(9): 95401-095401. DOI: 10.1088/2058-6272/aa7332 |
[6] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[7] | QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07 |
[8] | WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06 |
[9] | XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11 |
[10] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |