Advanced Search+
Zhongyong CHEN, Zhifang LIN, Wei YAN, Duwei HUANG, Yunong WEI, You LI, Nianheng CAI, Jie HU, Yonghua DING, Yunfeng LIANG, Zhonghe JIANG, J-TEXT Team. Overview of runaway current suppression and dissipation on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124009. DOI: 10.1088/2058-6272/aca272
Citation: Zhongyong CHEN, Zhifang LIN, Wei YAN, Duwei HUANG, Yunong WEI, You LI, Nianheng CAI, Jie HU, Yonghua DING, Yunfeng LIANG, Zhonghe JIANG, J-TEXT Team. Overview of runaway current suppression and dissipation on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124009. DOI: 10.1088/2058-6272/aca272

Overview of runaway current suppression and dissipation on J-TEXT tokamak

More Information
  • The main works on disruption mitigation including suppression and mitigation of runaway current on the J-TEXT tokamak are summarized in this paper. Two strategies for the mitigation of runaway electron (RE) beams are applied in experiments. The first strategy enables the REs to be completely suppressed by means of supersonic molecular beam injection and resonant magnetic perturbation which can enhance RE loss, magnetic energy transfer which can reduce the electric field, and secondary massive gas injection (MGI) which can increase the collisional damping. For the second strategy, the runaway current is allowed to form but should be dissipated or soft landed within tolerance. It is observed that the runaway current can be significantly dissipated by MGI, and the dissipation rate increases with the injected impurity particle number and eventually stabilizes at 28 MA s−1. The dissipation rate of the runaway current can be up to 3 MA s−1 by ohmic field. Shattered pellet injection has been chosen as the main disruption mitigation method, which has the capability of injecting material deeper into the plasma for higher density assimilation when compared to MGI. Moreover, simulation works show that the RE seeds in the plasma are strongly influenced under different phases and sizes of 2/1 mode locked islands during thermal quench. The robust runaway suppression and runaway current dissipation provide an important insight on the disruption mitigation for future large tokamaks.

  • This work is supported by the National MCF Energy R & D Program of China (Nos. 2019YFE03010004, 2018YFE0309103, 2018YFE0310300, 2018YFE0309100, 2017YFE0302000, 2017YFE0300501), National Natural Science Foundation of China (Nos. 11775089, 51821005, 12205122, 11905077 and 11575068), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 21KJB140025).

  • [1]
    Lehnen M et al 2015 J. Nucl. Mater. 463 39 doi: 10.1016/j.jnucmat.2014.10.075
    [2]
    ITER Physics Expert Group on Disruptions et al 1999 Nucl. Fusion 39 2251 doi: 10.1088/0029-5515/39/12/303
    [3]
    Riccardo V et al 2010 Plasma Phys. Control. Fusion 52 124018 doi: 10.1088/0741-3335/52/12/124018
    [4]
    Reux C et al 2010 Nucl. Fusion 50 095006 doi: 10.1088/0029-5515/50/9/095006
    [5]
    Lehnen M et al 2011 Nucl. Fusion 51 123010 doi: 10.1088/0029-5515/51/12/123010
    [6]
    Commaux N et al 2016 Nucl. Fusion 56 046007 doi: 10.1088/0029-5515/56/4/046007
    [7]
    Martín-Solís J R, Loarte A and Lehnen M 2017 Nucl. Fusion 57 066025 doi: 10.1088/1741-4326/aa6939
    [8]
    Granetz R S et al 2014 Phys. Plasmas 21 072506 doi: 10.1063/1.4886802
    [9]
    Zhuang G et al 2013 Nucl. Fusion 53 104014 doi: 10.1088/0029-5515/53/10/104014
    [10]
    Luo Y H et al 2014 Rev. Sci. Instrum. 85 083504 doi: 10.1063/1.4891864
    [11]
    Rao B et al 2014 Fusion Eng. Des. 89 378 doi: 10.1016/j.fusengdes.2014.03.038
    [12]
    Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
    [13]
    Li Y et al 2018 Rev. Sci. Instrum. 89 10K116 doi: 10.1063/1.5035186
    [14]
    Xiao J S et al 2015 J. Fusion Energy 34 1020 doi: 10.1007/s10894-015-9918-3
    [15]
    Zhang M et al 2016 Fusion Eng. Des. 109–11 975 doi: 10.1016/j.fusengdes.2016.01.040
    [16]
    Cai N H et al 2021 Fusion Eng. Des. 169 112488 doi: 10.1016/j.fusengdes.2021.112488
    [17]
    Chen J et al 2014 Rev. Sci. Instrum. 85 11D303 doi: 10.1063/1.4891603
    [18]
    Guo D J et al 2017 Rev. Sci. Instrum. 88 123502 doi: 10.1063/1.4996360
    [19]
    Yang Z J et al 2012 Rev. Sci. Instrum. 83 10E313 doi: 10.1063/1.4732069
    [20]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112 doi: 10.1063/1.4960167
    [21]
    Chen Z Y et al 2012 Rev. Sci. Instrum. 83 056108 doi: 10.1063/1.4721659
    [22]
    Tong R H et al 2018 Rev. Sci. Instrum. 89 10E113 doi: 10.1063/1.5035187
    [23]
    Breizman B N et al 2019 Nucl. Fusion 59 083001 doi: 10.1088/1741-4326/ab1822
    [24]
    Connor J W and Hastie R J 1975 Nucl. Fusion 15 415 doi: 10.1088/0029-5515/15/3/007
    [25]
    Dreicer H 1960 Phys. Rev. 117 329 doi: 10.1103/PhysRev.117.329
    [26]
    Smith H M and Verwichte E 2008 Phys. Plasmas 15 072502 doi: 10.1063/1.2949692
    [27]
    Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion 37 1355 doi: 10.1088/0029-5515/37/10/I03
    [28]
    Hollmann E M et al 2010 Phys. Plasmas 17 056117 doi: 10.1063/1.3309426
    [29]
    Liu C et al 2018 Nucl. Fusion 58 096030 doi: 10.1088/1741-4326/aacc9b
    [30]
    Spong D A et al 2018 Phys. Rev. Lett. 120 155002 doi: 10.1103/PhysRevLett.120.155002
    [31]
    Paz-Soldan C et al 2019 Nucl. Fusion 59 066025 doi: 10.1088/1741-4326/ab1769
    [32]
    Zeng L et al 2013 Phys. Rev. Lett. 110 235003 doi: 10.1103/PhysRevLett.110.235003
    [33]
    Commaux N et al 2011 Nucl. Fusion 51 103001 doi: 10.1088/0029-5515/51/10/103001
    [34]
    Huang D W et al 2017 Plasma Phys. Control. Fusion 59 085002 doi: 10.1088/1361-6587/aa717c
    [35]
    Chen Z Y et al 2018 Nucl. Fusion 58 082002 doi: 10.1088/1741-4326/aab2fc
    [36]
    Lin Z F et al 2019 Plasma Phys. Control. Fusion 61 024005 doi: 10.1088/1361-6587/aaf691
    [37]
    Wei Y N et al 2019 Plasma Phys. Control. Fusion 61 084003 doi: 10.1088/1361-6587/ab210b
    [38]
    Wei Y N et al 2020 Plasma Phys. Control. Fusion 62 025002 doi: 10.1088/1361-6587/ab52c8
    [39]
    Konovalov S et al 2016 Proc. of 2016 IAEA Fusion Energy Conf. (Kyoto) (Vienna: IAEA)
    [40]
    Fredrickson E D et al 2015 Nucl. Fusion 55 013006 doi: 10.1088/0029-5515/55/1/013006
    [41]
    Eidietis N W et al 2012 Phys. Plasmas 19 056109 doi: 10.1063/1.3695000
    [42]
    Carnevale D et al 2019 Plasma Phys. Control. Fusion 61 014036 doi: 10.1088/1361-6587/aaef53
    [43]
    Ficker O et al 2019 Nucl. Fusion 59 096036 doi: 10.1088/1741-4326/ab210f
    [44]
    Hu J et al 2020 Plasma Sci. Technol. 22 115102 doi: 10.1088/2058-6272/aba681
    [45]
    Li Y et al 2021 Nucl. Fusion 61 126025 doi: 10.1088/1741-4326/ac2cf7
    [46]
    Sovinec C R et al 2004 J. Comput. Phys. 195 355 doi: 10.1016/j.jcp.2003.10.004
    [47]
    Jiang Z H et al 2019 Phys. Plasmas 26 062508 doi: 10.1063/1.5100093
    [48]
    Li C H et al 2020 Plasma Phys. Control. Fusion 62 095010 doi: 10.1088/1361-6587/aba365
  • Related Articles

    [1]Wei YAN, Guinan ZOU, Zhongyong CHEN, You LI, Jiangang FANG, Zhifang LIN, Zhonghe JIANG, Nengchao WANG, Bo RAO, Yangbo LI, Zhengkang REN, Chuanxu ZHAO, Yu ZHONG, Fanxi LIU, Yinlong YU, Zisen NIE, Xun ZHOU, Yuan SHENG, Yuwei SUN, Song ZHOU, Xiaoqing ZHANG, Zhoujun YANG, Zhipeng CHEN, Yonghua DING, the J-TEXT Team. Influence of 3D helical magnetic perturbations on runaway electron generation in J-TEXT tokamak[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ada5c6
    [2]Ruirui MA, Chen ZHAO, Yao ZHOU, Chang LIU. Numerical study of runaway current impact on sawtooth oscillations in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e7
    [3]I M BALACHENKOV, N N BAKHAREV, V K GUSEV, M V ILIASOVA, E M KHILKEVICH, P S KORENEV, A E KONKOV, V B MINAEV, Yu V MITRIZHKIN, M I PATROV, Yu V PETROV, N V SAKHAROV, A E SHEVELEV, O M SKREKEL. Chirping instabilities produced by a runaway electron beam at a spherical tokamak[J]. Plasma Science and Technology, 2023, 25(7): 075102. DOI: 10.1088/2058-6272/acb875
    [4]Donghui XIA, Xixuan CHEN, Dengfeng XU, Jiangang FANG, Junli ZHANG, Nengchao WANG, Zhoujun YANG, Zhongyong CHEN, Yonghua DING, Wei ZHENG, Shaoxiang MA, Zhijiang WANG, Yuan PAN. Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124010. DOI: 10.1088/2058-6272/aca4b5
    [5]Lingke MOU, Zhongyong CHEN, Wei YAN, You LI, Weikang ZHANG, Jiangang FANG, Yingzhou JIANG, Xiaobo ZHANG, Yu ZHONG, Feng LI, Guinan ZOU, Fanxi LIU, Zhipeng CHEN, Zhoujun YANG, Nengchao WANG, Yonghua DING, Yuan PAN, J-TEXT Team. Suppression of runaway current by electrode biasing and limiter biasing on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124001. DOI: 10.1088/2058-6272/ac85a2
    [6]Jintao QIU (邱锦涛), Cheng ZHANG (章程), Zehui LIU (刘泽慧), Bangdou HUANG (黄邦斗), Tao SHAO (邵涛). Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air[J]. Plasma Science and Technology, 2021, 23(6): 64011-064011. DOI: 10.1088/2058-6272/abf299
    [7]Jie HU (胡捷), Wei YAN (严伟), Ruihai TONG (佟瑞海), Wei LI (李维), Zhongyong CHEN (陈忠勇), Anjue DAI (戴岸珏), Duwei HUANG (黄都伟), Yunong WEI (魏禹农), Tiankui MA (马天逵), Yuan HUANG (黄缘), Yang LI (李阳), Wei ZHENG (郑玮), Zhifang LIN (林志芳), You LI (李由), Huaiyu YANG (杨怀玉), Duoqin WANG (王铎钦), Wei BAI (白炜), Yu ZHONG (钟昱), Jiangang FANG (方建港), J-TEXT Team. Soft landing of runaway currents by ohmic field in J-TEXT tokamak[J]. Plasma Science and Technology, 2020, 22(11): 115102. DOI: 10.1088/2058-6272/aba681
    [8]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [9]A. C. ENGLAND, Z. Y. CHEN, D. C. SEO, J. CHUNG, Y. S. LEEV, J. W. YOO, W. C. KIM, Y. S. BAE, Y. M. JEONV, J. G. KWAK, M. KWON, the KSTAR Tea. Runaway Electron Suppression by ECRH and RMP in KSTAR[J]. Plasma Science and Technology, 2013, 15(2): 119-122. DOI: 10.1088/1009-0630/15/2/08
    [10]SONG Xianying (宋先瑛), YANG Jinwei (杨进蔚), LI Xu (李旭), YUAN Guoliang (袁国梁), ZHANG Yipo (张轶泼). Synergetic Effects of Runaway and Disruption Induced by VDE on the First Wall Damage in HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 207-214. DOI: 10.1088/1009-0630/14/3/05
  • Cited by

    Periodical cited type(4)

    1. Liu, S.-J., Wang, F., Hu, D. et al. Transport characteristic evaluation of runaway electrons in an ITER disruption simulation. Plasma Physics and Controlled Fusion, 2024, 66(8): 085016. DOI:10.1088/1361-6587/ad5c9a
    2. Long, T., Diamond, P., Ke, R. et al. The role of shear flow collapse and enhanced turbulence spreading in edge cooling approaching the density limit. Nuclear Fusion, 2024, 64(6): 066011. DOI:10.1088/1741-4326/ad3e15
    3. Liu, F.X., Yan, W., Chen, Z.Y. et al. Effect of 2/1 tearing mode on radiation asymmetry during disruptions on J-TEXT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114152
    4. Li, K., Li, Z., Jiang, Z. Simulation on the suppression effect of external passive field on runaway electrons on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401841

    Other cited types(0)

Catalog

    Figures(18)

    Article views (95) PDF downloads (28) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return