Advanced Search+
Donghui XIA, Xixuan CHEN, Dengfeng XU, Jiangang FANG, Junli ZHANG, Nengchao WANG, Zhoujun YANG, Zhongyong CHEN, Yonghua DING, Wei ZHENG, Shaoxiang MA, Zhijiang WANG, Yuan PAN. Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124010. DOI: 10.1088/2058-6272/aca4b5
Citation: Donghui XIA, Xixuan CHEN, Dengfeng XU, Jiangang FANG, Junli ZHANG, Nengchao WANG, Zhoujun YANG, Zhongyong CHEN, Yonghua DING, Wei ZHENG, Shaoxiang MA, Zhijiang WANG, Yuan PAN. Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124010. DOI: 10.1088/2058-6272/aca4b5

Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak

More Information
  • Corresponding author:

    Donghui XIA, E-mail: xiadh@hust.edu.cn

  • Received Date: August 23, 2022
  • Revised Date: November 18, 2022
  • Accepted Date: November 20, 2022
  • Available Online: December 05, 2023
  • Published Date: December 18, 2022
  • In order to broaden the range of the plasma parameters and provide experimental conditions for physical research into high-performance plasma, the development of the electron cyclotron resonance heating (ECRH) system for the J-TEXT tokamak was initiated in 2017. For the first stage, the ECRH system operated successfully with one 105 GHz/500 kW/1 s gyrotron in 2019. More than 400 kW electron cyclotron (EC) wave power has been injected into the plasma successfully, raising the core electron temperature to 1.5 keV. In 2022, another 105 GHz/500 kW/1 s gyrotron completed commissioning tests which signifies that the ECRH system could generate an EC wave power of 1 MW in total. Under the support of the ECRH system, various physical experiments have been carried out on J-TEXT. The electron thermal transport in ECRH plasmas has been investigated. When ECRH is turned on, the electron thermal diffusivity significantly increases. The runaway current is elevated when a disruption occurs during ECRH heating. When the injected EC wave power is 400 kW, the conversion efficiency of runaway current increases from 35% to 75%. Fast electron behavior is observed in electron cyclotron current drive (ECCD) plasma by the fast electron bremsstrahlung diagnostic (FEB). The increase in the FEB intensity implies that ECCD could generate fast electrons. A successful startup with a 200 kW ECW is achieved. With the upgrade of the ECRH system, the J-TEXT operational range could be expanded and further relevant research could be conducted.

  • This work was supported by the National Key Research and Development Program of China (Nos. 2017YFE0300200 and 2017YFE0300204), the Key Research and Development Program of Hubei Province (No. 2021BAA167) and National Natural Science Foundation of China (No. 51821005).

  • [1]
    Cengher M et al 2014 IEEE Trans. Plasma Sci. 42 1964 doi: 10.1109/TPS.2013.2292299
    [2]
    Kasparek W et al 2005 Fusion Eng. Des. 74 243 doi: 10.1016/j.fusengdes.2005.06.247
    [3]
    Wagner D et al 2016 J. Infrared Millim. Terahertz Waves 37 45 doi: 10.1007/s10762-015-0187-z
    [4]
    Wang X J et al 2015 Fusion Eng. Des. 96–97 181 doi: 10.1016/j.fusengdes.2015.03.042
    [5]
    Huang M et al 2012 EPJ Web of Conferences 32 04012 doi: 10.1051/epjconf/20123204012
    [6]
    Kirov K K et al 2006 Plasma Phys. Control. Fusion 48 245 doi: 10.1088/0741-3335/48/2/006
    [7]
    Shi Z B et al 2007 Plasma Sci. Technol. 9 534 doi: 10.1088/1009-0630/9/5/04
    [8]
    Song S D et al 2012 Nucl. Fusion 52 033006 doi: 10.1088/0029-5515/52/3/033006
    [9]
    Stober J et al 2011 Nucl. Fusion 51 083031 doi: 10.1088/0029-5515/51/8/083031
    [10]
    Sinha J et al 2022 Nucl. Fusion 62 066013 doi: 10.1088/1741-4326/ac59ea
    [11]
    Zohm H et al 1997 Phys. Plasmas 4 3433 doi: 10.1063/1.872487
    [12]
    La Haye R J et al 2002 Phys. Plasmas 9 2051 doi: 10.1063/1.1456066
    [13]
    Sheikh U A et al 2018 Nucl. Fusion 58 106026 doi: 10.1088/1741-4326/aad924
    [14]
    Alikaev V V et al 2000 Plasma Phys. Rep. 26 177 doi: 10.1134/1.952849
    [15]
    Razumova K A et al 2000 Plasma Phys. Control. Fusion 42 973 doi: 10.1088/0741-3335/42/9/303
    [16]
    Chapman I T et al 2013 Plasma Phys. Control. Fusion 55 065009 doi: 10.1088/0741-3335/55/6/065009
    [17]
    Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
    [18]
    Zhang J L et al 2020 IEEE Trans. Plasma Sci. 48 1560 doi: 10.1109/TPS.2019.2951816
    [19]
    Chen X X et al 2022 Proc. of the 21st Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) (20–24 June 2022) (Saint-Paullez-Durance, France: ITER)
    [20]
    Ma S X et al 2014 IEEE Trans. Plasma Sci. 42 656 doi: 10.1109/TPS.2014.2300506
    [21]
    Xia D H et al 2018 Plasma Sci. Technol. 20 014018 doi: 10.1088/2058-6272/aa936d
    [22]
    Wang Z J et al 2021 IEEE Trans. Plasma Sci. 49 258 doi: 10.1109/TPS.2020.3041717
    [23]
    Wang H et al 2015 EC18 18th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating 87 (Les Ulis: EDP Sciences) 02021
    [24]
    Weng W T et al 2022 Plasma Sci. Technol. 24 065602 doi: 10.1088/2058-6272/ac5d7b
    [25]
    Xiong S Q et al 2022 Plasma Sci. Technol. 24 105601 doi: 10.1088/2058-6272/ac6f48
    [26]
    Yang Z J et al 2021 Nucl. Fusion 61 086005 doi: 10.1088/1741-4326/ac04f4
    [27]
    Bai W et al 2021 Plasma Phys. Control. Fusion 63 115014 doi: 10.1088/1361-6587/abffb9
    [28]
    Zhang X B et al 2022 Plasma Sci. Technol. 24 064007 doi: 10.1088/2058-6272/ac4ee6
    [29]
    Zhang J L et al 2022 Proc. of the 21st Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) (20–24 June 2022) (Saint-Paullez-Durance, France: ITER)
    [30]
    White A E et al 2010 Phys. Plasmas 17 020701 doi: 10.1063/1.3318469
    [31]
    Schmitz L et al 2012 Nucl. Fusion 52 023003 doi: 10.1088/0029-5515/52/2/023003
    [32]
    Wang G et al 2011 Phys. Plasmas 18 082504 doi: 10.1063/1.3610552
    [33]
    Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
    [34]
    Reux C et al 2015 Nucl. Fusion 55 093013 doi: 10.1088/0029-5515/55/9/093013
    [35]
    Turnbull A D et al 1995 Phys. Rev. Lett. 74 718 doi: 10.1103/PhysRevLett.74.718
    [36]
    Fidone I and TFR Group 1981 Phys. Rev. A 24 2861 doi: 10.1103/PhysRevA.24.2861
  • Related Articles

    [1]Wei YAN, Guinan ZOU, Zhongyong CHEN, You LI, Jiangang FANG, Zhifang LIN, Zhonghe JIANG, Nengchao WANG, Bo RAO, Yangbo LI, Zhengkang REN, Chuanxu ZHAO, Yu ZHONG, Fanxi LIU, Yinlong YU, Zisen NIE, Xun ZHOU, Yuan SHENG, Yuwei SUN, Song ZHOU, Xiaoqing ZHANG, Zhoujun YANG, Zhipeng CHEN, Yonghua DING, the J-TEXT Team. Influence of 3D helical magnetic perturbations on runaway electron generation in J-TEXT tokamak[J]. Plasma Science and Technology, 2025, 27(3): 035104. DOI: 10.1088/2058-6272/ada5c6
    [2]Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685
    [3]Bowen RUAN (阮博文), Zhoujun YANG (杨州军), Xiaoming PAN (潘晓明), Hao ZHOU (周豪), Fengqi CHANG (常风岐), Jing ZHOU (周静). Estimation of magnetic island width by the fluctuations of electron cyclotron emission radiometer on J-TEXT[J]. Plasma Science and Technology, 2019, 21(1): 15102-015102. DOI: 10.1088/2058-6272/aae382
    [4]Haiyan MA (马海燕), Donghui XIA (夏冬辉), Zhijiang WANG (王之江), Fangtai CUI (崔芳泰), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Changhai LIU (刘昌海). Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT[J]. Plasma Science and Technology, 2018, 20(2): 24004-024004. DOI: 10.1088/2058-6272/aa99d3
    [5]Donghui XIA (夏冬辉), Fangtai CUI (崔芳泰), Changhai LIU (刘昌海), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Zhijiang WANG (王之江), J-TEXT team. The anode power supply for the ECRH system on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(1): 14018-014018. DOI: 10.1088/2058-6272/aa936d
    [6]Zhenling ZHAO (赵朕领), Yilun ZHU (朱逸伦), Li TONG (仝丽), Jinlin XIE (谢锦林), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Zhoujun YANG (杨州军), Ge ZHUANG (庄革), N C LUHMANN JR, C W DOMIER. Quasi-3D electron cyclotron emission imaging on J-TEXT[J]. Plasma Science and Technology, 2017, 19(9): 94001-094001. DOI: 10.1088/2058-6272/aa750d
    [7]LIU Hai (刘海), CHEN Zhipeng (陈志鹏), ZHUANG Ge (庄革), SUN Yue (孙岳), ZHU Lizhi (朱立志), XIAO Chijin (肖持进), CHEN Jie (陈杰). Investigation of the Ion Energy Transport in the Scrape-Off Layer on the J-TEXT Tokamak Using a Retarding Field Analyzer[J]. Plasma Science and Technology, 2016, 18(6): 601-606. DOI: 10.1088/1009-0630/18/6/04
    [8]A. C. ENGLAND, Z. Y. CHEN, D. C. SEO, J. CHUNG, Y. S. LEEV, J. W. YOO, W. C. KIM, Y. S. BAE, Y. M. JEONV, J. G. KWAK, M. KWON, the KSTAR Tea. Runaway Electron Suppression by ECRH and RMP in KSTAR[J]. Plasma Science and Technology, 2013, 15(2): 119-122. DOI: 10.1088/1009-0630/15/2/08
    [9]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18
  • Cited by

    Periodical cited type(7)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    3. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673
    4. Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e
    5. Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135
    6. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
    7. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533

    Other cited types(0)

Catalog

    Figures(16)  /  Tables(2)

    Article views (65) PDF downloads (40) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return