Citation: | Bingbing DONG, Zhiyuan GUO, Zelin ZHANG, Tao WEN, Nianwen XIANG. Numerical simulation and experimental verification of plasma jet development in gas gap switch[J]. Plasma Science and Technology, 2023, 25(5): 055505. DOI: 10.1088/2058-6272/acadc0 |
Plasma jet triggered gas gap switch has obvious advantages in fast control switch. The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch. However, the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws. In this work, a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-ε turbulence equation. The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results, which verifies the accuracy of the simulation model calculation. The plasma jet is a long strip with an initial velocity of 1.0 km·s-1 and develops in both axial and radial directions. The jet velocity fluctuates significantly with axial height. As the plasma jet enters the main gap, the pressure inside the trigger cavity drops by 80%, resulting in a rapid drop in the jet velocity. When the plasma jet head interacts with the atmosphere, the two-phase fluid compresses each other, generating a forward-propelled pressure wave. The plasma jet heads flow at high velocity, a negative pressure zone is formed in the middle part of the jet, and the pressure peak decreases gradually with height. As the value of the inlet pressure increases, the characteristic parameters of the plasma jet increase. The entrainment phenomenon is evident, which leads to an increase in the pressure imbalance of the atmospheric gas medium, leading to a significant Coandǎ effect. Compared with air, the characteristic parameters of a plasma jet in SF6 are lower, and the morphological evolution is significantly suppressed. The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.
This work was supported by National Natural Science Foundation of China (No. 52107142).
[1] |
Shu Y B and Chen W J 2018 High Voltage 3 1 doi: 10.1049/hve.2018.0003
|
[2] |
An T, Tang G F and Wang W N 2017 High Voltage 2 1 doi: 10.1049/hve.2017.0010
|
[3] |
Zhang Z et al 2015 IEEE Trans. Power Electron. 30 5237 doi: 10.1109/TPEL.2014.2363686
|
[4] |
Xu D Z et al 2019 J. Eng. 16 1906 doi: 10.1049/joe.2018.8729
|
[5] |
Li B T et al 2021 High Voltage 6 881 doi: 10.1049/hve2.12091
|
[6] |
Meng P Y et al 2020 Trans. China Electrotech. Soc. 35 523(in Chinese)
|
[7] |
Wang H T et al 2015 IEEE Trans. Power Deliv. 31 683 doi: 10.1109/TPWRD.2015.2469595
|
[8] |
Dong B J et al 2012 IEEE Trans. Plasma Sci. 40 2817 doi: 10.1109/TPS.2012.2210913
|
[9] |
Tie W H et al 2014 IEEE Trans. Plasma Sci. 42 1729 doi: 10.1109/TPS.2014.2321831
|
[10] |
Zhang Q, Yu Y G and Zheng S F 2016 Chin. J. High Pressure Phys. 30 335(in Chinese)
|
[11] |
Kim K, Kwak H S and Park J Y 2010 J. Therm. Sci. Technol. 5 75 doi: 10.1299/jtst.5.75
|
[12] |
Sharikov I V and Surzhikov S T 2005 36th AIAA Plasmadynamics and Lasers Conf. vol 4390
|
[13] |
Shao X J et al 2011 High Voltage Eng. 37 1499(in Chinese)
|
[14] |
Wang L et al 2014 AIAA J. 52 879 doi: 10.2514/1.J052686
|
[15] |
Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
|
[16] |
Pei X K et al 2018 J. Phys. D: Appl. Phys. 51 384001 doi: 10.1088/1361-6463/aad4e9
|
[17] |
Dong B B et al 2022 IEEE Trans. Plasma Sci. 50 873 doi: 10.1109/TPS.2022.3155565
|
[18] |
Tie W H et al 2018 Plasma Sci. Technol. 20 014009 doi: 10.1088/2058-6272/aa8cbe
|
[19] |
Dong B B et al 2022 High Voltage Eng. 48 1808(in Chinese)
|
[20] |
Huang D et al 2017 Phys. Plasmas 24 073501 doi: 10.1063/1.4989714
|
[21] |
Dong B B et al 2022 IEEE Trans. Plasma Sci. 50 4693 doi: 10.1109/TPS.2022.3209151
|
[22] |
Pavlenko A V et al 2008 Tech. Phys. Lett. 34 129 doi: 10.1134/S1063785008020132
|
[23] |
Chen L et al 2020 Phys. Plasmas 27 023501 doi: 10.1063/1.5126506
|
[24] |
Zhao X W et al 2017 Plasma Sci. Technol. 19 52
|
[25] |
Liu X D 2019 J. Fusion Energy 38 213 doi: 10.1007/s10894-019-00211-x
|
[26] |
Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
|
[27] |
Han R Y et al 2020 J. Phys. D: Appl. Phys. 53 345201 doi: 10.1088/1361-6463/ab8b07
|
[28] |
Kim S H et al 2009 IEEE Trans. Magn. 45 341 doi: 10.1109/TMAG.2008.2008415
|
[29] |
Wu J W et al 2015 IEEE Trans. Plasma Sci. 43 3425 doi: 10.1109/TPS.2015.2428934
|
[30] |
Anderson K V et al 2012 AIAA J. 50 1855 doi: 10.2514/1.J051309
|
[1] | Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d |
[2] | Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b |
[3] | H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669 |
[4] | Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64 |
[5] | Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26 |
[6] | Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7 |
[7] | KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20 |
[8] | LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19 |
[9] | FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03 |
[10] | HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430. |
1. |
Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
![]() |
|
2. | Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021 | |
3. | Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672 | |
4. |
Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
![]() |
|
5. | Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8 | |
6. | Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486 | |
7. | Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253 | |
8. | Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253 | |
9. | Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173 | |
10. | Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4 | |
11. | Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9 | |
12. | Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573 | |
13. | Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924 | |
14. | Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841 | |
15. | Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9 | |
16. | Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321 | |
17. | ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30 | |
18. | Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8 | |
19. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |