Advanced Search+
Bingbing DONG, Zhiyuan GUO, Zelin ZHANG, Tao WEN, Nianwen XIANG. Numerical simulation and experimental verification of plasma jet development in gas gap switch[J]. Plasma Science and Technology, 2023, 25(5): 055505. DOI: 10.1088/2058-6272/acadc0
Citation: Bingbing DONG, Zhiyuan GUO, Zelin ZHANG, Tao WEN, Nianwen XIANG. Numerical simulation and experimental verification of plasma jet development in gas gap switch[J]. Plasma Science and Technology, 2023, 25(5): 055505. DOI: 10.1088/2058-6272/acadc0

Numerical simulation and experimental verification of plasma jet development in gas gap switch

More Information
  • Corresponding author:

    Bingbing DONG, E-mail: bndong@hfut.edu.cn

  • Received Date: September 15, 2022
  • Revised Date: December 20, 2022
  • Accepted Date: December 20, 2022
  • Available Online: December 05, 2023
  • Published Date: February 21, 2023
  • Plasma jet triggered gas gap switch has obvious advantages in fast control switch. The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch. However, the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws. In this work, a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-ε turbulence equation. The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results, which verifies the accuracy of the simulation model calculation. The plasma jet is a long strip with an initial velocity of 1.0 km·s-1 and develops in both axial and radial directions. The jet velocity fluctuates significantly with axial height. As the plasma jet enters the main gap, the pressure inside the trigger cavity drops by 80%, resulting in a rapid drop in the jet velocity. When the plasma jet head interacts with the atmosphere, the two-phase fluid compresses each other, generating a forward-propelled pressure wave. The plasma jet heads flow at high velocity, a negative pressure zone is formed in the middle part of the jet, and the pressure peak decreases gradually with height. As the value of the inlet pressure increases, the characteristic parameters of the plasma jet increase. The entrainment phenomenon is evident, which leads to an increase in the pressure imbalance of the atmospheric gas medium, leading to a significant Coandǎ effect. Compared with air, the characteristic parameters of a plasma jet in SF6 are lower, and the morphological evolution is significantly suppressed. The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.

  • This work was supported by National Natural Science Foundation of China (No. 52107142).

  • [1]
    Shu Y B and Chen W J 2018 High Voltage 3 1 doi: 10.1049/hve.2018.0003
    [2]
    An T, Tang G F and Wang W N 2017 High Voltage 2 1 doi: 10.1049/hve.2017.0010
    [3]
    Zhang Z et al 2015 IEEE Trans. Power Electron. 30 5237 doi: 10.1109/TPEL.2014.2363686
    [4]
    Xu D Z et al 2019 J. Eng. 16 1906 doi: 10.1049/joe.2018.8729
    [5]
    Li B T et al 2021 High Voltage 6 881 doi: 10.1049/hve2.12091
    [6]
    Meng P Y et al 2020 Trans. China Electrotech. Soc. 35 523(in Chinese)
    [7]
    Wang H T et al 2015 IEEE Trans. Power Deliv. 31 683 doi: 10.1109/TPWRD.2015.2469595
    [8]
    Dong B J et al 2012 IEEE Trans. Plasma Sci. 40 2817 doi: 10.1109/TPS.2012.2210913
    [9]
    Tie W H et al 2014 IEEE Trans. Plasma Sci. 42 1729 doi: 10.1109/TPS.2014.2321831
    [10]
    Zhang Q, Yu Y G and Zheng S F 2016 Chin. J. High Pressure Phys. 30 335(in Chinese)
    [11]
    Kim K, Kwak H S and Park J Y 2010 J. Therm. Sci. Technol. 5 75 doi: 10.1299/jtst.5.75
    [12]
    Sharikov I V and Surzhikov S T 2005 36th AIAA Plasmadynamics and Lasers Conf. vol 4390
    [13]
    Shao X J et al 2011 High Voltage Eng. 37 1499(in Chinese)
    [14]
    Wang L et al 2014 AIAA J. 52 879 doi: 10.2514/1.J052686
    [15]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
    [16]
    Pei X K et al 2018 J. Phys. D: Appl. Phys. 51 384001 doi: 10.1088/1361-6463/aad4e9
    [17]
    Dong B B et al 2022 IEEE Trans. Plasma Sci. 50 873 doi: 10.1109/TPS.2022.3155565
    [18]
    Tie W H et al 2018 Plasma Sci. Technol. 20 014009 doi: 10.1088/2058-6272/aa8cbe
    [19]
    Dong B B et al 2022 High Voltage Eng. 48 1808(in Chinese)
    [20]
    Huang D et al 2017 Phys. Plasmas 24 073501 doi: 10.1063/1.4989714
    [21]
    Dong B B et al 2022 IEEE Trans. Plasma Sci. 50 4693 doi: 10.1109/TPS.2022.3209151
    [22]
    Pavlenko A V et al 2008 Tech. Phys. Lett. 34 129 doi: 10.1134/S1063785008020132
    [23]
    Chen L et al 2020 Phys. Plasmas 27 023501 doi: 10.1063/1.5126506
    [24]
    Zhao X W et al 2017 Plasma Sci. Technol. 19 52
    [25]
    Liu X D 2019 J. Fusion Energy 38 213 doi: 10.1007/s10894-019-00211-x
    [26]
    Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
    [27]
    Han R Y et al 2020 J. Phys. D: Appl. Phys. 53 345201 doi: 10.1088/1361-6463/ab8b07
    [28]
    Kim S H et al 2009 IEEE Trans. Magn. 45 341 doi: 10.1109/TMAG.2008.2008415
    [29]
    Wu J W et al 2015 IEEE Trans. Plasma Sci. 43 3425 doi: 10.1109/TPS.2015.2428934
    [30]
    Anderson K V et al 2012 AIAA J. 50 1855 doi: 10.2514/1.J051309
  • Related Articles

    [1]Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1
    [2]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [3]Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821
    [4]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [5]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [6]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [7]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [8]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [9]GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
    [10]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
  • Cited by

    Periodical cited type(22)

    1. Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047
    2. Tu, H., Cui, Q., Sun, H. et al. An integrated weak thrust stand based on vertical pendulum and its Performance characteristics | [集成化的竖直摆式微推力测试台及其性能]. Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology, 2024, 44(6): 154-163. DOI:10.16708/j.cnki.1000-758X.2024.0100
    3. Zhang, G., Ren, J., Liu, Q. et al. Development of a low-power Hall thruster with permanent magnets and a dual trigger electrode hollow cathode for the Qilu satellite constellation. Aerospace Science and Technology, 2024. DOI:10.1016/j.ast.2024.109538
    4. He, Y., Feng, F., Wang, Z. et al. Research on micro-thruster test platform based on uniform magnetic field calibration | [基于均匀磁场标定的微动力测试平台研究]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2024, 47(5): 730-737. DOI:10.7673/j.issn.1006-2793.2024.05.016
    5. Tu, H., Sun, H., Liu, K. et al. Investigating the repeatability error in thrust measurement on a pendulum-based stand. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115397
    6. Long, J., Cheng, Y., Wang, J. et al. Simulation and test for the micro-newton electromagnetic calibration force measurement. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115001
    7. Sun, B., Chang, Y., Liu, X. et al. Radial ablation uniformity of cathode and design of double anode micro-cathode arc thruster. Acta Astronautica, 2024. DOI:10.1016/j.actaastro.2024.04.044
    8. Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c
    9. Kan, W., Liu, W., Lou, W. et al. High-safety energetic micro-igniter for micro-thrust system. Sensors and Actuators A: Physical, 2024. DOI:10.1016/j.sna.2024.115056
    10. Ye, J., Wang, S., Chang, H. et al. Development of a Laser Micro-Thruster and On-Orbit Testing. Aerospace, 2024, 11(1): 23. DOI:10.3390/aerospace11010023
    11. Zhang, Z., Zhang, G., Mao, R. et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.09.011
    12. Tang, H.-B., Zhang, Z.-K., Zhang, Z. Research Progress of Micro Thrust Measurement Technology for Space Electrical Propulsion | [空间电推进微小推力测量技术]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2301001. DOI:10.13675/j.cnki.tjjs.2301001
    13. Zhang, Z., Zhang, G., Qi, J. et al. Roll torque measurement and interpretation of low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2022.11.040
    14. Wang, S., Wang, S., Xing, B. et al. Study on the ablation performance of semiconductor lasers on different materials. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2665908
    15. Xu, H., Mao, Q., Gao, Y. et al. A newly designed decoupling method for micro-Newton thrust measurement. Review of Scientific Instruments, 2023, 94(1): 014504. DOI:10.1063/5.0120130
    16. Liu, Z.X., Yang, W.J., Zhao, P. et al. Loading capacity, rotation loss and torsional oscillation research on an Evershed-type hybrid superconducting bearing used for micro-thrust measurements. Superconductor Science and Technology, 2022, 35(12): 124003. DOI:10.1088/1361-6668/ac96b5
    17. Zhang, Z., Zhang, Z., Wang, Y. et al. Simultaneous experimental verification of indirect thrust measurement method based on Hall-effect thruster and plasma plume. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111384
    18. WANG, S., DU, B., DU, B. et al. Impacts of laser pulse width and target thickness on laser micro-propulsion performance. Plasma Science and Technology, 2022, 24(10): 105504. DOI:10.1088/2058-6272/ac6da8
    19. Feng, X.-H., Hong, Y.-J., Cui, H.-C. et al. Numerical Simulation and Experimental Methods for High Precision Electromagnetic Calibration Force | [高精度电磁标定力数值模拟及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(8): 210806. DOI:10.13675/j.cnki.tjjs.210806
    20. Mühlich, N.S., Gerger, J., Seifert, B. et al. Simultaneously measured direct and indirect thrust of a FEEP thruster using novel thrust balance and beam diagnostics. Acta Astronautica, 2022. DOI:10.1016/j.actaastro.2022.05.009
    21. Wang, S., Du, B., Xing, B. et al. Interface Adhesion Property and Laser Ablation Performance of GAP-PET Double-Layer Tape with Plasma Treatment. Nanomaterials, 2022, 12(11): 1827. DOI:10.3390/nano12111827
    22. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Figures(11)

    Article views (52) PDF downloads (51) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return