Citation: | Zhuo HUANG, Song ZHOU, Jinrong FAN, Da LI, Bo RAO, Nengchao WANG, Yonghua DING, Feiyue MAO, Mingxiang HUANG, Wei TIAN, Zhongyong CHEN, Zhipeng CHEN, Yunfeng LIANG, the J-TEXT Team. Design of new resonant magnetic perturbation coils on the J-TEXT tokamak[J]. Plasma Science and Technology, 2023, 25(11): 115601. DOI: 10.1088/2058-6272/acd997 |
The resonant magnetic perturbation (RMP) system is a powerful auxiliary system on tokamaks. On the J-TEXT tokamak, a set of new in-vessel coils is designed to enhance the amplitude of the RMP. The new coils are designed to be two-turn saddle coils. These two-turn saddle coils have been optimized in terms of their structure, support, and protection components to overcome the limitations of the narrow in-vessel space, resulting in a compact coil module that can be accommodated in the vessel. To verify the feasibility of this design, an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils. A multi-field coupled simulation is performed to investigate the capacity of heat dissipation. As a result of these efforts, the new RMP coils have been successfully installed on the J-TEXT tokamak. It has significantly enhanced the RMP amplitude and been widely applied in experiments.
This work is supported by Hubei Provincial Natural Science Foundation of China (No. BZQ22006), Fundamental Research Funds for the Central Universities (No. CZY20028), National Magnetic Confinement Fusion Energy R&D Program of China (No. 2018YFE0309102), and National Natural Science Foundation of China (No. 51821005).
[1] |
Hender T C et al 1992 Nucl. Fusion 32 2091 doi: 10.1088/0029-5515/32/12/I02
|
[2] |
Strait E J et al 2019 Nucl. Fusion 59 112012 doi: 10.1088/1741-4326/ab15de
|
[3] |
Evans T E et al 2004 Phys. Rev. Lett. 92 235003 doi: 10.1103/PhysRevLett.92.235003
|
[4] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[5] |
Park J K et al 2008 Nucl. Fusion 48 045006 doi: 10.1088/0029-5515/48/4/045006
|
[6] |
Evans T E et al 2008 Nucl. Fusion 48 024002 doi: 10.1088/0029-5515/48/2/024002
|
[7] |
Park J K et al 2018 Nat. Phys. 14 1223 doi: 10.1038/s41567-018-0268-8
|
[8] |
Liang Y et al 2005 Phys. Rev. Lett. 94 105003 doi: 10.1103/PhysRevLett.94.105003
|
[9] |
Hu Q M et al 2014 Nucl. Fusion 54 064013 doi: 10.1088/0029-5515/54/6/064013
|
[10] |
Buttery R J et al 2000 Nucl. Fusion 40 807 doi: 10.1088/0029-5515/40/4/306
|
[11] |
Chitarin G et al 2003 Fusion Eng. Des. 66–68 1055 doi: 10.1016/S0920-3796(03)00273-4
|
[12] |
Giesen B et al 1997 Fusion Eng. Des. 37 341 doi: 10.1016/S0920-3796(97)00075-6
|
[13] |
Rao B et al 2012 IEEE Trans. Appl. Supercond. 22 4201804 doi: 10.1109/TASC.2011.2181935
|
[14] |
Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
|
[15] |
Zhuang G et al 2011 Nucl. Fusion 51 094020 doi: 10.1088/0029-5515/51/9/094020
|
[16] |
Rao B et al 2014 Fusion Eng. Des. 89 378 doi: 10.1016/j.fusengdes.2014.03.038
|
[17] |
Guo D J et al 2017 AIP Adv. 7 105002 doi: 10.1063/1.4993480
|
[18] |
Hao C D et al 2012 Plasma Sci. Technol. 14 83 doi: 10.1088/1009-0630/14/1/18
|
[19] |
Yi B et al 2015 IEEE Trans. Plasma Sci. 43 594 doi: 10.1109/TPS.2014.2387851
|
[20] |
Wang N C et al 2014 Nucl. Fusion 54 064014 doi: 10.1088/0029-5515/54/6/064014
|
[21] |
Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
|
[22] |
Huang Z et al 2020 Nucl. Fusion 60 064003 doi: 10.1088/1741-4326/ab8859
|
[23] |
Mao F Y et al 2022 Plasma Sci. Technol. 24 124002 doi: 10.1088/2058-6272/ac9f2e
|
[1] | Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503 |
[2] | Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2 |
[3] | Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee |
[4] | Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0 |
[5] | Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0 |
[6] | Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7 |
[7] | Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb |
[8] | Junkai YAO (姚军锴), Danjie ZHOU (周丹杰), Haibo HE (何海波), Chengjun HE (何承军), Zhiwei SHI (史志伟), Hai DU (杜海). Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators[J]. Plasma Science and Technology, 2017, 19(4): 44002-044002. DOI: 10.1088/2058-6272/aa57f1 |
[9] | R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10 |
[10] | WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12 |
1. | Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318 | |
2. | Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76 | |
3. | Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088 | |
4. | SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019 | |
5. | Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f | |
6. | Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083 | |
7. | Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530 | |
8. | Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223 | |
9. | Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705 |