Processing math: 12%
Advanced Search+
Long MA, Yufan QU, Yuan LUO, Dehao XIE, Yanxi WANG, Shuo WANG, Guofeng QU, Peipei REN, Xiaobing LUO, Xingquan LIU, Jifeng HAN, Roy WADA, Weiping LIN, Linge ZANG, Jingjun ZHU. The research progress of an E//B neutral particle analyzer[J]. Plasma Science and Technology, 2024, 26(3): 034002. DOI: 10.1088/2058-6272/ad0c20
Citation: Long MA, Yufan QU, Yuan LUO, Dehao XIE, Yanxi WANG, Shuo WANG, Guofeng QU, Peipei REN, Xiaobing LUO, Xingquan LIU, Jifeng HAN, Roy WADA, Weiping LIN, Linge ZANG, Jingjun ZHU. The research progress of an E//B neutral particle analyzer[J]. Plasma Science and Technology, 2024, 26(3): 034002. DOI: 10.1088/2058-6272/ad0c20

The research progress of an E//B neutral particle analyzer

More Information
  • An E//B neutral particle analyzer (NPA) has been designed and is under development at Sichuan University and Southwestern Institute of Physics. The main purpose of the {\boldsymbol{{E}} }// {\boldsymbol{{B}}} NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak. The {\boldsymbol{{E}} }// {\boldsymbol{{B}}} NPA contains three main units, i.e. the stripping unit, the analyzing unit and the detection unit. A gas stripping chamber was adopted as the stripping unit. The results of the simulations and beam tests for the stripping chamber are presented. Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit. The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source (ECRIS) platform. The detection unit consists of 32 lutetium-yttrium oxyorthosilicate (LYSO) detector modules arranged in two rows. The response functions of \alpha, hydrogen ions ({ \mathrm{H}}^+ , {\mathrm{H}}^{+}_{2} and {\mathrm{H}}^{+}_{3}) and \gamma for a detector module were measured with ^{241}Am, ^{137}Cs and ^{152}Eu sources together with the 50 kV ECRIS platform. The overall results indicate that the designed {\boldsymbol{{E}} }// {\boldsymbol{{B}}} NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV.

  • [1]
    Afrosimov V V et al 1960 Zhur. Tekh. Fiz. 30 https://www.osti.gov/biblio/4055215
    [2]
    Afanasyev V I et al 2003 Rev. Sci. Instrum. 74 2338 doi: 10.1063/1.1542664
    [3]
    Afanasyev V I et al 2010 Nucl. Instrum. Methods A 621 456 doi: 10.1016/j.nima.2010.06.201
    [4]
    Petrov M P et al 2021 Eur. Phys. J. H 46 5 doi: 10.1140/epjh/s13129-021-00009-6
    [5]
    Chernyshev F V et al 2004 Instru. Exp. Tech. 47 214 doi: 10.1023/B:INET.0000025204.01783.1a
    [6]
    Medley S S and Roquemore A L 1998 Rev. Sci. Instrum. 69 2651 doi: 10.1063/1.1148994
    [7]
    Zhu Y B et al 2012 Rev. Sci. Instrum. 83 10D304
    [8]
    Li W et al 2012 Rev. Sci. Instrum. 83 10D702
    [9]
    Polosatkin S et al 2013 Nucl. Instrum. Methods A 720 42 doi: 10.1016/j.nima.2012.12.039
    [10]
    Liu D Q et al 2003 Fusion Eng. Des. 66–68 147
    [11]
    Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
    [12]
    Wu S and The EAST team 2007 Fusion Eng. Des. 82 463
    [13]
    Bell M G The tokamak fusion test reactor In: Neilson G H Magnetic Fusion Energy Woodhead Publishing 2016: 119
    [14]
    Horton L et al 2016 Fusion Eng. Des. 109 925
    [15]
    Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
    [16]
    Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001 doi: 10.1088/0256-307X/37/12/125001
    [17]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
    [18]
    Shi P W, Chen W and Duan X R 2021 Chin. Phys. Lett. 38 035202 doi: 10.1088/0256-307X/38/3/035202
    [19]
    Chen Y et al 2020 Chin. Phys. Lett. 37 095201 doi: 10.1088/0256-307X/37/9/095201
    [20]
    Madsen B et al 2020 Plasma Phys. Control. Fusion 62 115019 doi: 10.1088/1361-6587/abb79b
    [21]
    Gorelenkov N N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001 doi: 10.1088/0029-5515/54/12/125001
    [22]
    Ding X T and Chen W 2018 Plasma Sci. Technol. 20 094008 doi: 10.1088/2058-6272/aad27a
    [23]
    Afrosimov V V et al 1962 Nuclear Fusion (Austria) Suppl. 2, Pt. 3 https://www.osti.gov/biblio/4695507
    [24]
    Luo Y et al 2021 Nucl. Sci. Tech. 32 69 doi: 10.1007/s41365-021-00909-8
    [25]
    Zang L G et al 2022 Plasma Sci. Technol. 24 064002 doi: 10.1088/2058-6272/ac6090
    [26]
    Zang L G et al 2020 Plasma Fusion Res. 15 2402036 doi: 10.1585/pfr.15.2402036
    [27]
    ANSYS https://www.ansys.com/
    [28]
    Agostinelli S et al 2003 Nucl. Instrum. Methods A 506 250 doi: 10.1016/S0168-9002(03)01368-8
    [29]
    Allison J et al 2016 Nucl. Instrum. Methods A 835 186 doi: 10.1016/j.nima.2016.06.125
    [30]
    COMSOL https://cn.comsol.com/
    [31]
    MPPC (multi-pixel photon counter) https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf
    [32]
    SRIM – The Stopping and Range of Ions in Matter http://www.srim.org/
  • Related Articles

    [1]Linge ZANG, Yufan QU, Yuan LUO, Weiping LIN. Design of the stripping unit and the electromagnetic analysis unit for the E//B NPA on HL-2A/2M tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064002. DOI: 10.1088/2058-6272/ac6090
    [2]Yahong XIE (谢亚红), Chundong HU (胡纯栋), Sheng LIU (刘胜), Yuanlai XIE (谢远来), Yongjian XU (许永建), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Peng SHENG (盛鹏), YumingGU(顾玉明), Jun LI (李军), Zhimin LIU (刘智民). R&D progress of high power ion source on EAST-NBI[J]. Plasma Science and Technology, 2018, 20(1): 14023-014023. DOI: 10.1088/2058-6272/aa8c6c
    [3]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [4]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [5]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [6]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [7]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [8]Tae-Seong KIM, Seung Ho JEONG, Doo Hee CHANG, Kwang Won LEE, Sang-Ryul IN. Performance of a New Ion Source for KSTAR Tokamak Plasma Heating[J]. Plasma Science and Technology, 2014, 16(6): 620-624. DOI: 10.1088/1009-0630/16/6/15
    [9]XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24
    [10]JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03
  • Cited by

    Periodical cited type(5)

    1. Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0
    2. Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476
    3. Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174
    4. ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003
    5. Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003

    Other cited types(0)

Catalog

    Article views (29) PDF downloads (22) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return