Citation: | Yue CHEN, Jikun GAO, Ting LONG, Lin NIE, Jinming GAO, Yao MA, Yuan HUANG, Wenjing TIAN, Yanmin LIU, Xiaodong ZHU, Ge ZHUANG, Wulyu ZHONG, Min XU. A dual-route optical emission spectroscopy diagnostic with wide spectral range and high wavelength resolution on HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034004. DOI: 10.1088/2058-6272/ad0c95 |
A dual-route optical emission spectroscopy (D-OES) diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2A tokamak. This diagnostic is composed of an imaging system, a beam-splitting system for dual-route measurements, fiber bundles, a spectrometer system, and a control and acquisition system. One route is used to obtain wide-spectral-range spectra, and the other route is used to acquire high-wavelength-resolution line shapes. The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm (@200–1000 nm). The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm (@200–660 nm). The spatial resolution of each route of D-OES is about 4 cm with 11 channels. The temporal resolution is 16 ms at maximum in the single-channel mode. Wide-range spectra (containing Balmer series and a Fulcher band) and highly resolved Hα line shapes are obtained by D-OES in the hydrogen glow discharge in the lab. D-OES measurements are carried out in the high-density deuterium experiments of HL-2A. The electron density ne and deuterium temperature TD in the X-point multifaceted asymmetric radiation from the edge (MARFE) region are derived simultaneously by fitting the measured Dα shape. The density ne is observed to increase from ~8.7×1018 m−3 to ~7.8×1019 m−3, and the temperature TD drops from ~14.4 eV to ~2.3 eV after the onset of MARFE in the discharge #38260.
[1] |
Soukhanovskii V A 2017 Plasma Phys. Control. Fusion 59 064005 doi: 10.1088/1361-6587/aa6959
|
[2] |
Welch B L et al 1995 Phys. Plasmas 2 4246 doi: 10.1063/1.871049
|
[3] |
Koubiti M et al 2003 J. Quant. Spectrosc. Radiat. Transf. 81 265 doi: 10.1016/S0022-4073(03)00079-7
|
[4] |
Verhaegh K et al 2021 Plasma Phys. Control. Fusion 63 035018 doi: 10.1088/1361-6587/abd4c0
|
[5] |
Manchanda R 2021 Nucl. Fusion 62 042014
|
[6] |
Verhaegh K 2017 Nucl. Mater. Energy 12 1112 doi: 10.1016/j.nme.2017.01.004
|
[7] |
Farley D R et al 2011 J. Quant. Spectrosc. Radiat. Transf. 112 800 doi: 10.1016/j.jqsrt.2010.10.015
|
[8] |
Fantz U 2004 Contrib. Plasma Phys. 44 508 doi: 10.1002/ctpp.200410072
|
[9] |
Nikiforov A Y et al 2015 Plasma Sources Sci. Technol. 24 034001 doi: 10.1088/0963-0252/24/3/034001
|
[10] |
Gigosos M A 2014 J. Phys. D: Appl. Phys. 47 343001
|
[11] |
Rosato J, Marandet Y and Stamm R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 333 doi: 10.1016/j.jqsrt.2016.10.005
|
[12] |
Pospieszczyk A et al 2013 J. Nucl. Mater. 438 S1249 doi: 10.1016/j.jnucmat.2013.01.277
|
[13] |
Hopwood J and Asmussen J 1991 Appl. Phys. Lett. 58 2473 doi: 10.1063/1.105232
|
[14] |
Van Zeeland M A et al 2010 Plasma Phys. Control. Fusion 52 045006 doi: 10.1088/0741-3335/52/4/045006
|
[15] |
Yada K et al 2009 J. Nucl. Mater. 390–391 290 doi: 10.1016/j.jnucmat.2009.01.123
|
[16] |
Fantz U, Heger B and Wünderlich D 2001 Plasma Phys. Control. Fusion 43 907 doi: 10.1088/0741-3335/43/7/305
|
[17] |
Reimer R et al 2013 Rev. Sci. Instrum. 84 113503 doi: 10.1063/1.4829665
|
[18] |
van Rooij G J et al 2013 J. Nucl. Mater. 438 S42 doi: 10.1016/j.jnucmat.2013.01.007
|
[19] |
Isler R C et al 1997 Phys. Plasmas 4 355 doi: 10.1063/1.872095
|
[20] |
Long T et al 2020 Rev. Sci. Instrum. 91 083504 doi: 10.1063/5.0005609
|
[21] |
Mao H M et al 2017 Rev. Sci. Instrum. 88 043502 doi: 10.1063/1.4979406
|
[22] |
Koubiti M et al 2013 J. Nucl. Mater. 438 S599 doi: 10.1016/j.jnucmat.2013.01.125
|
[23] |
Xu F et al 2018 Plasma Sci. Technol. 20 105102 doi: 10.1088/2058-6272/aad226
|
[24] |
Duan X R et al 2022 Nucl. Fusion 62 042020 doi: 10.1088/1741-4326/ac3be6
|
[25] |
Ding F et al 2013 Chin. Phys. Lett. 30 085201 doi: 10.1088/0256-307X/30/8/085201
|
[26] |
Zhu B L et al 2019 Phys. Plasmas 26 082107 doi: 10.1063/1.5096241
|
[27] |
Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125 doi: 10.1088/0963-0252/12/2/301
|
[28] |
Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer
|
[29] |
Potzel S et al 2014 Plasma Phys. Control. Fusion 56 025010 doi: 10.1088/0741-3335/56/2/025010
|
[30] |
Rosato J et al 2018 Contrib. Plasma Phys. 58 578 doi: 10.1002/ctpp.201700100
|
[31] |
Luo Y et al 2020 Plasma Phys. Control. Fusion 62 075005 doi: 10.1088/1361-6587/ab8a62
|
[32] |
Lipschultz B et al 1998 Phys. Rev. Lett. 81 1007 doi: 10.1103/PhysRevLett.81.1007
|
[1] | S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846 |
[2] | Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5 |
[3] | Xinshuai YANG (杨新帅), Ruiji HU (胡睿佶), Jun CHEN (陈俊), Fudi WANG (王福地), Jia FU (符佳), Yingying LI (李颖颖), Hongming ZHANG (张洪明), Yongcai SHEN (沈永才), Xianghui YIN (尹相辉), Bo LYU (吕波), EAST team. Measurement of impurity lines with two- crystal x-ray spectrometers on EAST[J]. Plasma Science and Technology, 2018, 20(12): 124001. DOI: 10.1088/2058-6272/aad177 |
[4] | Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8 |
[5] | CHEN Zhaoxi (陈肇玺), HU Liqun (胡立群), CHENG Yong (程勇), LEI Mingzhun (雷明准), et al.. The Design and Test of a Be Window for the ITER Radial X-Ray Camera[J]. Plasma Science and Technology, 2013, 15(11): 1160-1164. DOI: 10.1088/1009-0630/15/11/15 |
[6] | SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06 |
[7] | ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07 |
[8] | T. Abdul KAREEM, A. Anu KALIANI. X-Ray Diffraction Study of Plasma Exposed and Annealed AlSb Bilayer Thin Film[J]. Plasma Science and Technology, 2013, 15(4): 382-385. DOI: 10.1088/1009-0630/15/4/13 |
[9] | HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02 |
[10] | LIN Caishou (林才寿), MAO Li (毛莉), HUANG Ning (黄宁), AN Zhu (安竹). Simulation Study of Quantitative X-Ray Fluorescence Analysis of Ore Slurry Using Partial Least-Squares Regression[J]. Plasma Science and Technology, 2012, 14(5): 427-430. DOI: 10.1088/1009-0630/14/5/22 |