Citation: | Yue CHEN, Jikun GAO, Ting LONG, Lin NIE, Jinming GAO, Yao MA, Yuan HUANG, Wenjing TIAN, Yanmin LIU, Xiaodong ZHU, Ge ZHUANG, Wulyu ZHONG, Min XU. A dual-route optical emission spectroscopy diagnostic with wide spectral range and high wavelength resolution on HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034004. DOI: 10.1088/2058-6272/ad0c95 |
A dual-route optical emission spectroscopy (D-OES) diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2A tokamak. This diagnostic is composed of an imaging system, a beam-splitting system for dual-route measurements, fiber bundles, a spectrometer system, and a control and acquisition system. One route is used to obtain wide-spectral-range spectra, and the other route is used to acquire high-wavelength-resolution line shapes. The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm (@200–1000 nm). The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm (@200–660 nm). The spatial resolution of each route of D-OES is about 4 cm with 11 channels. The temporal resolution is 16 ms at maximum in the single-channel mode. Wide-range spectra (containing Balmer series and a Fulcher band) and highly resolved Hα line shapes are obtained by D-OES in the hydrogen glow discharge in the lab. D-OES measurements are carried out in the high-density deuterium experiments of HL-2A. The electron density ne and deuterium temperature TD in the X-point multifaceted asymmetric radiation from the edge (MARFE) region are derived simultaneously by fitting the measured Dα shape. The density ne is observed to increase from ~8.7×1018 m−3 to ~7.8×1019 m−3, and the temperature TD drops from ~14.4 eV to ~2.3 eV after the onset of MARFE in the discharge #38260.
[1] |
Soukhanovskii V A 2017 Plasma Phys. Control. Fusion 59 064005 doi: 10.1088/1361-6587/aa6959
|
[2] |
Welch B L et al 1995 Phys. Plasmas 2 4246 doi: 10.1063/1.871049
|
[3] |
Koubiti M et al 2003 J. Quant. Spectrosc. Radiat. Transf. 81 265 doi: 10.1016/S0022-4073(03)00079-7
|
[4] |
Verhaegh K et al 2021 Plasma Phys. Control. Fusion 63 035018 doi: 10.1088/1361-6587/abd4c0
|
[5] |
Manchanda R 2021 Nucl. Fusion 62 042014
|
[6] |
Verhaegh K 2017 Nucl. Mater. Energy 12 1112 doi: 10.1016/j.nme.2017.01.004
|
[7] |
Farley D R et al 2011 J. Quant. Spectrosc. Radiat. Transf. 112 800 doi: 10.1016/j.jqsrt.2010.10.015
|
[8] |
Fantz U 2004 Contrib. Plasma Phys. 44 508 doi: 10.1002/ctpp.200410072
|
[9] |
Nikiforov A Y et al 2015 Plasma Sources Sci. Technol. 24 034001 doi: 10.1088/0963-0252/24/3/034001
|
[10] |
Gigosos M A 2014 J. Phys. D: Appl. Phys. 47 343001
|
[11] |
Rosato J, Marandet Y and Stamm R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 333 doi: 10.1016/j.jqsrt.2016.10.005
|
[12] |
Pospieszczyk A et al 2013 J. Nucl. Mater. 438 S1249 doi: 10.1016/j.jnucmat.2013.01.277
|
[13] |
Hopwood J and Asmussen J 1991 Appl. Phys. Lett. 58 2473 doi: 10.1063/1.105232
|
[14] |
Van Zeeland M A et al 2010 Plasma Phys. Control. Fusion 52 045006 doi: 10.1088/0741-3335/52/4/045006
|
[15] |
Yada K et al 2009 J. Nucl. Mater. 390–391 290 doi: 10.1016/j.jnucmat.2009.01.123
|
[16] |
Fantz U, Heger B and Wünderlich D 2001 Plasma Phys. Control. Fusion 43 907 doi: 10.1088/0741-3335/43/7/305
|
[17] |
Reimer R et al 2013 Rev. Sci. Instrum. 84 113503 doi: 10.1063/1.4829665
|
[18] |
van Rooij G J et al 2013 J. Nucl. Mater. 438 S42 doi: 10.1016/j.jnucmat.2013.01.007
|
[19] |
Isler R C et al 1997 Phys. Plasmas 4 355 doi: 10.1063/1.872095
|
[20] |
Long T et al 2020 Rev. Sci. Instrum. 91 083504 doi: 10.1063/5.0005609
|
[21] |
Mao H M et al 2017 Rev. Sci. Instrum. 88 043502 doi: 10.1063/1.4979406
|
[22] |
Koubiti M et al 2013 J. Nucl. Mater. 438 S599 doi: 10.1016/j.jnucmat.2013.01.125
|
[23] |
Xu F et al 2018 Plasma Sci. Technol. 20 105102 doi: 10.1088/2058-6272/aad226
|
[24] |
Duan X R et al 2022 Nucl. Fusion 62 042020 doi: 10.1088/1741-4326/ac3be6
|
[25] |
Ding F et al 2013 Chin. Phys. Lett. 30 085201 doi: 10.1088/0256-307X/30/8/085201
|
[26] |
Zhu B L et al 2019 Phys. Plasmas 26 082107 doi: 10.1063/1.5096241
|
[27] |
Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125 doi: 10.1088/0963-0252/12/2/301
|
[28] |
Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer
|
[29] |
Potzel S et al 2014 Plasma Phys. Control. Fusion 56 025010 doi: 10.1088/0741-3335/56/2/025010
|
[30] |
Rosato J et al 2018 Contrib. Plasma Phys. 58 578 doi: 10.1002/ctpp.201700100
|
[31] |
Luo Y et al 2020 Plasma Phys. Control. Fusion 62 075005 doi: 10.1088/1361-6587/ab8a62
|
[32] |
Lipschultz B et al 1998 Phys. Rev. Lett. 81 1007 doi: 10.1103/PhysRevLett.81.1007
|
[1] | Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1 |
[2] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[3] | Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821 |
[4] | Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e |
[5] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[6] | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[7] | Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede |
[8] | Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08 |
[9] | GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13 |
[10] | HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11 |
1. | Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047 | |
2. | Tu, H., Cui, Q., Sun, H. et al. An integrated weak thrust stand based on vertical pendulum and its Performance characteristics | [集成化的竖直摆式微推力测试台及其性能]. Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology, 2024, 44(6): 154-163. DOI:10.16708/j.cnki.1000-758X.2024.0100 | |
3. | Zhang, G., Ren, J., Liu, Q. et al. Development of a low-power Hall thruster with permanent magnets and a dual trigger electrode hollow cathode for the Qilu satellite constellation. Aerospace Science and Technology, 2024. DOI:10.1016/j.ast.2024.109538 | |
4. | He, Y., Feng, F., Wang, Z. et al. Research on micro-thruster test platform based on uniform magnetic field calibration | [基于均匀磁场标定的微动力测试平台研究]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2024, 47(5): 730-737. DOI:10.7673/j.issn.1006-2793.2024.05.016 | |
5. | Tu, H., Sun, H., Liu, K. et al. Investigating the repeatability error in thrust measurement on a pendulum-based stand. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115397 | |
6. | Long, J., Cheng, Y., Wang, J. et al. Simulation and test for the micro-newton electromagnetic calibration force measurement. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115001 | |
7. | Sun, B., Chang, Y., Liu, X. et al. Radial ablation uniformity of cathode and design of double anode micro-cathode arc thruster. Acta Astronautica, 2024. DOI:10.1016/j.actaastro.2024.04.044 | |
8. | Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c | |
9. | Kan, W., Liu, W., Lou, W. et al. High-safety energetic micro-igniter for micro-thrust system. Sensors and Actuators A: Physical, 2024. DOI:10.1016/j.sna.2024.115056 | |
10. | Ye, J., Wang, S., Chang, H. et al. Development of a Laser Micro-Thruster and On-Orbit Testing. Aerospace, 2024, 11(1): 23. DOI:10.3390/aerospace11010023 | |
11. | Zhang, Z., Zhang, G., Mao, R. et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.09.011 | |
12. | Tang, H.-B., Zhang, Z.-K., Zhang, Z. Research Progress of Micro Thrust Measurement Technology for Space Electrical Propulsion | [空间电推进微小推力测量技术]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2301001. DOI:10.13675/j.cnki.tjjs.2301001 | |
13. | Zhang, Z., Zhang, G., Qi, J. et al. Roll torque measurement and interpretation of low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2022.11.040 | |
14. | Wang, S., Wang, S., Xing, B. et al. Study on the ablation performance of semiconductor lasers on different materials. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2665908 | |
15. | Xu, H., Mao, Q., Gao, Y. et al. A newly designed decoupling method for micro-Newton thrust measurement. Review of Scientific Instruments, 2023, 94(1): 014504. DOI:10.1063/5.0120130 | |
16. | Liu, Z.X., Yang, W.J., Zhao, P. et al. Loading capacity, rotation loss and torsional oscillation research on an Evershed-type hybrid superconducting bearing used for micro-thrust measurements. Superconductor Science and Technology, 2022, 35(12): 124003. DOI:10.1088/1361-6668/ac96b5 | |
17. | Zhang, Z., Zhang, Z., Wang, Y. et al. Simultaneous experimental verification of indirect thrust measurement method based on Hall-effect thruster and plasma plume. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111384 | |
18. | WANG, S., DU, B., DU, B. et al. Impacts of laser pulse width and target thickness on laser micro-propulsion performance. Plasma Science and Technology, 2022, 24(10): 105504. DOI:10.1088/2058-6272/ac6da8 | |
19. | Feng, X.-H., Hong, Y.-J., Cui, H.-C. et al. Numerical Simulation and Experimental Methods for High Precision Electromagnetic Calibration Force | [高精度电磁标定力数值模拟及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(8): 210806. DOI:10.13675/j.cnki.tjjs.210806 | |
20. | Mühlich, N.S., Gerger, J., Seifert, B. et al. Simultaneously measured direct and indirect thrust of a FEEP thruster using novel thrust balance and beam diagnostics. Acta Astronautica, 2022. DOI:10.1016/j.actaastro.2022.05.009 | |
21. | Wang, S., Du, B., Xing, B. et al. Interface Adhesion Property and Laser Ablation Performance of GAP-PET Double-Layer Tape with Plasma Treatment. Nanomaterials, 2022, 12(11): 1827. DOI:10.3390/nano12111827 | |
22. | Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7 |