Citation: | Yue CHEN, Jikun GAO, Ting LONG, Lin NIE, Jinming GAO, Yao MA, Yuan HUANG, Wenjing TIAN, Yanmin LIU, Xiaodong ZHU, Ge ZHUANG, Wulyu ZHONG, Min XU. A dual-route optical emission spectroscopy diagnostic with wide spectral range and high wavelength resolution on HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034004. DOI: 10.1088/2058-6272/ad0c95 |
A dual-route optical emission spectroscopy (D-OES) diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2A tokamak. This diagnostic is composed of an imaging system, a beam-splitting system for dual-route measurements, fiber bundles, a spectrometer system, and a control and acquisition system. One route is used to obtain wide-spectral-range spectra, and the other route is used to acquire high-wavelength-resolution line shapes. The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm (@200–1000 nm). The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm (@200–660 nm). The spatial resolution of each route of D-OES is about 4 cm with 11 channels. The temporal resolution is 16 ms at maximum in the single-channel mode. Wide-range spectra (containing Balmer series and a Fulcher band) and highly resolved Hα line shapes are obtained by D-OES in the hydrogen glow discharge in the lab. D-OES measurements are carried out in the high-density deuterium experiments of HL-2A. The electron density ne and deuterium temperature TD in the X-point multifaceted asymmetric radiation from the edge (MARFE) region are derived simultaneously by fitting the measured Dα shape. The density ne is observed to increase from ~8.7×1018 m−3 to ~7.8×1019 m−3, and the temperature TD drops from ~14.4 eV to ~2.3 eV after the onset of MARFE in the discharge #38260.
[1] |
Soukhanovskii V A 2017 Plasma Phys. Control. Fusion 59 064005 doi: 10.1088/1361-6587/aa6959
|
[2] |
Welch B L et al 1995 Phys. Plasmas 2 4246 doi: 10.1063/1.871049
|
[3] |
Koubiti M et al 2003 J. Quant. Spectrosc. Radiat. Transf. 81 265 doi: 10.1016/S0022-4073(03)00079-7
|
[4] |
Verhaegh K et al 2021 Plasma Phys. Control. Fusion 63 035018 doi: 10.1088/1361-6587/abd4c0
|
[5] |
Manchanda R 2021 Nucl. Fusion 62 042014
|
[6] |
Verhaegh K 2017 Nucl. Mater. Energy 12 1112 doi: 10.1016/j.nme.2017.01.004
|
[7] |
Farley D R et al 2011 J. Quant. Spectrosc. Radiat. Transf. 112 800 doi: 10.1016/j.jqsrt.2010.10.015
|
[8] |
Fantz U 2004 Contrib. Plasma Phys. 44 508 doi: 10.1002/ctpp.200410072
|
[9] |
Nikiforov A Y et al 2015 Plasma Sources Sci. Technol. 24 034001 doi: 10.1088/0963-0252/24/3/034001
|
[10] |
Gigosos M A 2014 J. Phys. D: Appl. Phys. 47 343001
|
[11] |
Rosato J, Marandet Y and Stamm R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 333 doi: 10.1016/j.jqsrt.2016.10.005
|
[12] |
Pospieszczyk A et al 2013 J. Nucl. Mater. 438 S1249 doi: 10.1016/j.jnucmat.2013.01.277
|
[13] |
Hopwood J and Asmussen J 1991 Appl. Phys. Lett. 58 2473 doi: 10.1063/1.105232
|
[14] |
Van Zeeland M A et al 2010 Plasma Phys. Control. Fusion 52 045006 doi: 10.1088/0741-3335/52/4/045006
|
[15] |
Yada K et al 2009 J. Nucl. Mater. 390–391 290 doi: 10.1016/j.jnucmat.2009.01.123
|
[16] |
Fantz U, Heger B and Wünderlich D 2001 Plasma Phys. Control. Fusion 43 907 doi: 10.1088/0741-3335/43/7/305
|
[17] |
Reimer R et al 2013 Rev. Sci. Instrum. 84 113503 doi: 10.1063/1.4829665
|
[18] |
van Rooij G J et al 2013 J. Nucl. Mater. 438 S42 doi: 10.1016/j.jnucmat.2013.01.007
|
[19] |
Isler R C et al 1997 Phys. Plasmas 4 355 doi: 10.1063/1.872095
|
[20] |
Long T et al 2020 Rev. Sci. Instrum. 91 083504 doi: 10.1063/5.0005609
|
[21] |
Mao H M et al 2017 Rev. Sci. Instrum. 88 043502 doi: 10.1063/1.4979406
|
[22] |
Koubiti M et al 2013 J. Nucl. Mater. 438 S599 doi: 10.1016/j.jnucmat.2013.01.125
|
[23] |
Xu F et al 2018 Plasma Sci. Technol. 20 105102 doi: 10.1088/2058-6272/aad226
|
[24] |
Duan X R et al 2022 Nucl. Fusion 62 042020 doi: 10.1088/1741-4326/ac3be6
|
[25] |
Ding F et al 2013 Chin. Phys. Lett. 30 085201 doi: 10.1088/0256-307X/30/8/085201
|
[26] |
Zhu B L et al 2019 Phys. Plasmas 26 082107 doi: 10.1063/1.5096241
|
[27] |
Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125 doi: 10.1088/0963-0252/12/2/301
|
[28] |
Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer
|
[29] |
Potzel S et al 2014 Plasma Phys. Control. Fusion 56 025010 doi: 10.1088/0741-3335/56/2/025010
|
[30] |
Rosato J et al 2018 Contrib. Plasma Phys. 58 578 doi: 10.1002/ctpp.201700100
|
[31] |
Luo Y et al 2020 Plasma Phys. Control. Fusion 62 075005 doi: 10.1088/1361-6587/ab8a62
|
[32] |
Lipschultz B et al 1998 Phys. Rev. Lett. 81 1007 doi: 10.1103/PhysRevLett.81.1007
|
[1] | Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d |
[2] | Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b |
[3] | H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669 |
[4] | Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64 |
[5] | Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26 |
[6] | Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7 |
[7] | KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20 |
[8] | LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19 |
[9] | FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03 |
[10] | HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430. |
1. |
Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
![]() |
|
2. | Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021 | |
3. | Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672 | |
4. |
Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
![]() |
|
5. | Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8 | |
6. | Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486 | |
7. | Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253 | |
8. | Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253 | |
9. | Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173 | |
10. | Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4 | |
11. | Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9 | |
12. | Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573 | |
13. | Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924 | |
14. | Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841 | |
15. | Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9 | |
16. | Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321 | |
17. | ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30 | |
18. | Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8 | |
19. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |