Citation: | Renchuan HE, Tianchao XU, Xiaoyi YANG, Chijie XIAO, Zuyu ZHANG, Ruixin YUAN, Xiaogang WANG, Zhibin GUO, Xiuming YU, Yue GE. Laboratory observation of electron energy distribution near three-dimensional magnetic nulls[J]. Plasma Science and Technology, 2024, 26(3): 034007. DOI: 10.1088/2058-6272/ad0d4b |
The acceleration of electrons near three-dimensional (3D) magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process. To explore electron acceleration in a 3D magnetic null topology, we constructed a pair of 3D magnetic nulls in the PKU Plasma Test (PPT) device and observed acceleration of electrons near magnetic nulls. This study measured the plasma floating potential and ion density profiles around the 3D magnetic null. The potential wells near nulls may be related to the energy variations of electrons, so we measured the electron distribution functions (EDFs) at different spatial positions. The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls. With scanning probes that can directionally measure and theoretically analyze based on curve fitting, the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology. The kinetic energy of electrons accelerated by the electric field is 6 eV (ve∼7vAlfvén−e) and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
[1] |
Yamada M, Kulsrud R and Ji H T 2010 Rev. Mod. Phys. 82 603 doi: 10.1103/RevModPhys.82.603
|
[2] |
Mancuso S, Barghini D and Telloni D 2020 Astron. Astrophys. 636 A96 doi: 10.1051/0004-6361/201936819
|
[3] |
Gosling J T 2012 Space Sci. Rev. 172 187 doi: 10.1007/s11214-011-9747-2
|
[4] |
Forbes T G 1991 Geophys. Astrophys. Fluid Dyn. 62 15 doi: 10.1080/03091929108229123
|
[5] |
Mozer F S, Bale S D and Phan T D 2002 Phys. Rev. Lett. 89 015002 doi: 10.1103/PhysRevLett.89.015002
|
[6] |
Wygant J R et al 2005 J. Geophys. Res.: Space Phys. 110 A09206
|
[7] |
Øieroset M et al 2002 Phys. Rev. Lett. 89 195001 doi: 10.1103/PhysRevLett.89.195001
|
[8] |
Zhang B and Yan H R 2011 Astrophys. J. 726 90 doi: 10.1088/0004-637X/726/2/90
|
[9] |
Sergeev V A et al 2021 J. Geophys. Res.: Space Phys. 126 e2020JA028694
|
[10] |
Retinò A et al 2006 Geophys. Res. Lett. 33 L06101
|
[11] |
Burch J L and Drake J F 2009 Am. Sci. 97 392 doi: 10.1511/2009.80.392
|
[12] |
Ping Y L et al 2023 Nat. Phys. 19 263
|
[13] |
Ren Y et al 2008 Phys. Rev. Lett. 101 085003 doi: 10.1103/PhysRevLett.101.085003
|
[14] |
Lawrence E E and Gekelman W 2009 Phys. Rev. Lett. 103 105002 doi: 10.1103/PhysRevLett.103.105002
|
[15] |
Bohlin H et al 2014 Rev. Sci. Instrum. 85 023501 doi: 10.1063/1.4861359
|
[16] |
Forest C B et al 2015 J. Plasma Phys. 81 345810501 doi: 10.1017/S0022377815000975
|
[17] |
Brown M R et al 2002 Phys. Plasmas 9 2077 doi: 10.1063/1.1458589
|
[18] |
Yamada M 1999 J. Geophys. Res.: Space Phys. 104 14529
|
[19] |
Yamada M et al 2006 Phys. Plasmas 13 052119 doi: 10.1063/1.2203950
|
[20] |
He R C et al 2022 Plasma Sci. Technol. 24 115001 doi: 10.1088/2058-6272/ac770b
|
[21] |
Xiao C J et al 2016 Rev. Sci. Instrum. 87 11D610 doi: 10.1063/1.4961282
|
[22] |
Xu T C et al 2020 Nucl. Fusion 60 016029 doi: 10.1088/1741-4326/ab53a2
|
[23] |
Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 269501
|
[24] |
Chen F F 2012 Plasma Sources Sci. Technol. 21 055013 doi: 10.1088/0963-0252/21/5/055013
|
[25] |
Trent K R, Gallimore A D and Foster J E 2019 Phys. Plasmas 26 063513 doi: 10.1063/1.5093892
|
[26] |
Kado S et al 2004 Contrib. Plasma Phys. 44 656 doi: 10.1002/ctpp.200410097
|
[27] |
Hoegy W R and Brace L H 1999 Rev. Sci. Instrum. 70 3015 doi: 10.1063/1.1149862
|
[28] |
He J S et al 2008 Geophys. Res. Lett. 35 L14104
|
[1] | Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18 |
[2] | Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63 |
[3] | Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383 |
[4] | Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06 |
[5] | Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62 |
[6] | K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601 |
[7] | ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14 |
[8] | ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11 |
[9] | QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14 |
[10] | CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01 |
1. | Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301 |
2. | Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130 |
3. | An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827 |
4. | Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343 |
5. | Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762 |
6. | Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559 |
7. | Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410 |
8. | An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091 |
9. | Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113 |
10. | Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871 |
11. | Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880 |
12. | An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8 |
13. | Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de |