Advanced Search+
Zihan LI, Shangchuan YANG, Xinhang XU, Lifu ZHANG, Chengming QU, Chengpu LI, Ge ZHUANG, Jinlin XIE. A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks[J]. Plasma Science and Technology, 2024, 26(3): 034006. DOI: 10.1088/2058-6272/ad0d4c
Citation: Zihan LI, Shangchuan YANG, Xinhang XU, Lifu ZHANG, Chengming QU, Chengpu LI, Ge ZHUANG, Jinlin XIE. A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks[J]. Plasma Science and Technology, 2024, 26(3): 034006. DOI: 10.1088/2058-6272/ad0d4c

A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks

More Information
  • Author Bio:

    Jinlin XIE: jlxie@ustc.edu.cn

  • Corresponding author:

    Jinlin XIE, jlxie@ustc.edu.cn

  • Received Date: June 29, 2023
  • Revised Date: September 21, 2023
  • Accepted Date: September 25, 2023
  • Available Online: April 14, 2024
  • Published Date: March 05, 2024
  • Interpreting experimental diagnostics data in tokamaks, while considering non-ideal effects, is challenging due to the complexity of plasmas. To address this challenge, a general synthetic diagnostics (GSD) platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging. This platform utilizes plasma profiles as input and incorporates the finite-difference time domain, ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas. Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform. Finally, 2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data. This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.

  • [1]
    Park H K 2019 Adv. in Phys.: X 4 1633956
    [2]
    Tobias B J et al 2012 Rev. Sci. Instrum. 83 10E329 doi: 10.1063/1.4733742
    [3]
    Mazzucato E et al 1998 Rev. Sci. Instrum. 69 2201 doi: 10.1063/1.1149121
    [4]
    Mazzucato E et al 1998 Rev. Sci. Instrum. 69 1691 doi: 10.1063/1.1148828
    [5]
    Gao B X et al 2018 J. Instrum. 13 P02009 doi: 10.1088/1748-0221/13/02/P02009
    [6]
    Zhu Y L et al 2016 Rev. Sci. Instrum. 87 11D901 doi: 10.1063/1.4959162
    [7]
    Wang Y et al 2017 Nucl. Fusion 57 072007 doi: 10.1088/1741-4326/aa5e30
    [8]
    Li Z H et al 2022 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ 2022) Sep. 04 - 09, 2022, Rotterdam, Netherlands
    [9]
    Shi L 2017 Synthetic Diagnostics Platform for Fusion Plasma and a Two-Dimensional Synthetic Electron Cyclotron Emission Imaging Code PhD Thesis Princeton University
    [10]
    Kramer G J et al 2004 Plasma Phys. Control. Fusion 46 695 doi: 10.1088/0741-3335/46/4/009
    [11]
    Conway G D et al 2002 Plasma Phys. Control. Fusion 44 451 doi: 10.1088/0741-3335/44/4/305
    [12]
    Ren X X et al 2014 Rev. Sci. Instrum. 85 11D863 doi: 10.1063/1.4895100
    [13]
    Williams T 2014 Full-Wave Simulation of High-Frequency Electromagnetic Propagation Through Inhomogeneous Plasma PhD Thesis University of York
    [14]
    Thomas M B 2017 3D Full-wave Modelling of Microwave Interactions with Plasma Density Fluctuations PhD Thesis University of York
    [15]
    Ayub M K et al 2016 J. Instrum. 11 T03006 doi: 10.1088/1748-0221/11/03/T03006
    [16]
    Li J X et al 2018 Rev. Sci. Instrum. 89 093506 doi: 10.1063/1.5012778
    [17]
    Chen M et al 2018 Rev. Sci. Instrum. 89 10H117 doi: 10.1063/1.5035426
    [18]
    Xu M et al 2011 Plasma Sci. Technol. 13 167 doi: 10.1088/1009-0630/13/2/08
    [19]
    Costley A E et al 1974 Phys. Rev. Lett. 33 758 doi: 10.1103/PhysRevLett.33.758
    [20]
    Bornatici M 1982 Plasma Phys. 24 629 doi: 10.1088/0032-1028/24/6/005
    [21]
    Peters M et al 1995 Nucl. Fusion 35 873 doi: 10.1088/0029-5515/35/7/I10
    [22]
    Yu G Y et al 2022 Plasma Phys. Control. Fusion 64 095014 doi: 10.1088/1361-6587/ac7ee7
    [23]
    Yu G Y et al 2022 Rev. Sci. Instrum. 93 103528 doi: 10.1063/5.0099348
    [24]
    Shi L et al 2016 Rev. Sci. Instrum. 87 11D303 doi: 10.1063/1.4961553
    [25]
    Nazikian R et al 2001 Phys. Plasmas 8 1840 doi: 10.1063/1.1362534
    [26]
    Berenger J P et al 1994 J. Comput. Phys. 114 185 doi: 10.1006/jcph.1994.1159
    [27]
    Berenger J P et al 1996 J. Comput. Phys. 127 363 doi: 10.1006/jcph.1996.0181
    [28]
    Hutchinson I H 2002 Principles of Plasma Diagnostics Cambridge University Press
  • Related Articles

    [1]Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383
    [4]Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06
    [5]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [6]K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
    [7]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [8]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [9]QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14
    [10]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
  • Cited by

    Periodical cited type(13)

    1. Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301
    2. Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130
    3. An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827
    4. Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343
    5. Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762
    6. Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559
    7. Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410
    8. An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091
    9. Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113
    10. Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871
    11. Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880
    12. An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8
    13. Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de

    Other cited types(0)

Catalog

    Article views (26) PDF downloads (16) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return