Citation: | Yang ZHAO, Xiaohua ZHOU, Shengrong GAO, Shasha SONG, Yuzhen ZHAO. Effect of coil and chamber structure on plasma radial uniformity in radio frequency inductively coupled plasma[J]. Plasma Science and Technology, 2024, 26(7): 075402. DOI: 10.1088/2058-6272/ad31ef |
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma (ICP) to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing. This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP. The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density. Furthermore, optimizing the coil within the ICP reactor, using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity, elevating it from 56% to 96% within the range of the model sizes. Additionally, when the chamber aspect ratio k changes from 2.8 to 4.7, the plasma distribution changes from a center-high to a saddle-shaped distribution. Moreover, the plasma uniformity becomes worse. Finally, adjusting process parameters, such as increasing source power and gas pressure, can enhance plasma uniformity. These findings contribute to optimizing the etching process by improving plasma radial uniformity.
This work was supported by the Scientific Research Foundation of Xijing University, China (No. XJ19T03), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201701), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2024JC-YBMS-342).
[1] |
Hopwood J 1992 Plasma Sources Sci. Technol. 1 109 doi: 10.1088/0963-0252/1/2/006
|
[2] |
Lee H C 2018 Appl. Phys. Rev. 5 011108 doi: 10.1063/1.5012001
|
[3] |
Mackie N M et al 1997 Chem. Mater. 9 349 doi: 10.1021/cm960388q
|
[4] |
Park J H et al 2006 Appl. Phys. Lett. 89 121108 doi: 10.1063/1.2356075
|
[5] |
Charles C 2009 J. Phys. D: Appl. Phys. 42 163001 doi: 10.1088/0022-3727/42/16/163001
|
[6] |
Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
|
[7] |
Hagelaar G J M, Fubiani G and Boeuf J P 2011 Plasma Sources Sci. Technol. 20 015001 doi: 10.1088/0963-0252/20/1/015001
|
[8] |
Boeuf J P et al 2011 Plasma Sources Sci. Technol. 20 015002 doi: 10.1088/0963-0252/20/1/015002
|
[9] |
Santoso J et al 2015 Phys. Plasmas 22 093513 doi: 10.1063/1.4931469
|
[10] |
Sun X Y et al 2021 Plasma Sci. Technol. 23 095404 doi: 10.1088/2058-6272/ac0c6b
|
[11] |
Son E J, Cho S H and Lee H J 2020 J. Electr. Eng. Technol. 15 2259 doi: 10.1007/s42835-020-00497-4
|
[12] |
Xiao D Z et al 2020 Surf. Coat. Technol. 400 126252 doi: 10.1016/j.surfcoat.2020.126252
|
[13] |
Lu C et al 2023 Phys. Plasmas 30 063506 doi: 10.1063/5.0145117
|
[14] |
Collison W Z, Ni T Q and Barnes M S 1998 J. Vac. Sci. Technol. A 16 100 doi: 10.1116/1.580955
|
[15] |
Kim K N et al 2006 Appl. Phys. Lett. 89 251501 doi: 10.1063/1.2405417
|
[16] |
Gweon G H et al 2010 Vacuum 84 823 doi: 10.1016/j.vacuum.2009.10.051
|
[17] |
Mishra A et al 2012 Plasma Sources Sci. Technol. 21 035018 doi: 10.1088/0963-0252/21/3/035018
|
[18] |
Yang K C et al 2019 Vacuum 168 108802 doi: 10.1016/j.vacuum.2019.108802
|
[19] |
Levko D, Shukla C and Raja L L 2021 J. Vac. Sci. Technol. B 39 062204 doi: 10.1116/6.0001293
|
[20] |
Stittsworth J A and Wendt A E 1996 Plasma Sources Sci. Technol. 5 429 doi: 10.1088/0963-0252/5/3/011
|
[21] |
Hao Z Y et al 2020 Phys. Plasmas 27 043502 doi: 10.1063/1.5143099
|
[22] |
Mirza M M et al 2012 J. Vac. Sci. Technol. B 30 06FF02 doi: 10.1116/1.4755835
|
[23] |
Li J S et al 2008 J. Appl. Phys. 103 043505 doi: 10.1063/1.2885158
|
[24] |
Wächter A and Biegler L T 2006 Math. Program. 106 25 doi: 10.1007/s10107-004-0559-y
|
[25] |
Bukowski J D, Graves D B and Vitello P 1996 J. Appl. Phys. 80 2614 doi: 10.1063/1.363169
|
[26] |
Lee I, Graves D B and Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018 doi: 10.1088/0963-0252/17/1/015018
|
[27] |
Wang Y J et al 2021 Plasma Sci. Technol. 23 115602 doi: 10.1088/2058-6272/ac199d
|
[28] |
Si X J et al 2011 Phys. Plasmas 18 033504 doi: 10.1063/1.3566007
|
[29] |
Sobolewski M A and Kim J H 2007 J. Appl. Phys. 102 113302 doi: 10.1063/1.2815674
|
[30] |
Zhou J C et al 2022 Vacuum 195 110678 doi: 10.1016/j.vacuum.2021.110678
|
[31] |
Zhang Y R, Hu Y T and Wang Y N 2020 Plasma Sources Sci. Technol. 29 084003 doi: 10.1088/1361-6595/ab9350
|
[32] |
Li J et al 2020 J. Phys.: Conf. Ser. 1601 022044 doi: 10.1088/1742-6596/1601/2/022044
|
[1] | Pengyu WANG, Siyu XING, Daoman HAN, Yuru ZHANG, Yong LI, Cheng ZHOU, Fei GAO, Younian WANG. Effects of external parameters on plasma characteristics and uniformity in a dual cylindrical inductively coupled plasma[J]. Plasma Science and Technology, 2024, 26(12): 125401. DOI: 10.1088/2058-6272/ad73aa |
[2] | Na LI, Daoman HAN, Quanzhi ZHANG, Xuhui LIU, Yingjie WANG, Younian WANG. Fluid simulation of the effect of a dielectric window with high temperature on plasma parameters in inductively coupled plasma[J]. Plasma Science and Technology, 2023, 25(3): 035401. DOI: 10.1088/2058-6272/ac92ce |
[3] | Xiaoyan SUN (孙晓艳), Yuru ZHANG (张钰如), Jing YE (叶静), Younian WANG (王友年), Jianxin HE (何建新). Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma[J]. Plasma Science and Technology, 2021, 23(9): 95404-095404. DOI: 10.1088/2058-6272/ac0c6b |
[4] | Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035 |
[5] | Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1 |
[6] | Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef |
[7] | Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8 |
[8] | ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09 |
[9] | SHI Xingjian (侍行剑), HU Yemin (胡业民), GAO Zhe (高喆). Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio[J]. Plasma Science and Technology, 2012, 14(3): 215-221. DOI: 10.1088/1009-0630/14/3/06 |
[10] | ZHAO Guoli, XU Yong, SHANG Jianping, LIU Wenyao, ZHU Aimin, WANG Younian. Plasma Uniformity in a Dual Frequency Capacitively Coupled Plasma Reactor Measured by Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2011, 13(1): 61-67. |
1. | Jiang, D., Yip, C.-S., Jin, C.-Y. et al. Experimental verification of laser-induced fluorescence based on the velocity distribution of helium ash in multi-dipole device | [基于多偶极腔体的氦灰激光诱导荧光诊断实验验证研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(2): 242-248. DOI:10.16568/j.0254-6086.202402017 | |
2. | Shi, B., Jin, C., Yip, C.-S. et al. Optical System Design for Laser-Induced Fluorescence Study of Helium Atoms on the Linear Plasma Device. Fusion Science and Technology, 2024. DOI:10.1080/15361055.2024.2309089 | |
3. | Yip, C.-S., Jiang, D., Jin, C. et al. Recent development of LIF diagnostics in ASIPP. Journal of Instrumentation, 2023, 18(10): C10004. DOI:10.1088/1748-0221/18/10/C10004 | |
4. | Romadanov, I., Raitses, Y. A confocal laser-induced fluorescence diagnostic with an annular laser beam. Review of Scientific Instruments, 2023, 94(7): 073002. DOI:10.1063/5.0147669 | |
5. | Luan, C.-Y., Xu, G.-S., Yip, C.-S. et al. Experimental study of fluorescence frequency limit in LIF diagnosis | [激光诱导荧光诊断中荧光频率极限的实验研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2023, 43(1): 112-116. DOI:10.16568/j.0254-6086.202301019 | |
6. | Jiang, D., Jin, C.-Y., Yip, C.-S. et al. Probabilistic effect of metastable excitation on lock-in amplified plasma laser-induced fluorescence diagnostics at modulation frequencies comparable to the fluorescence frequency. Journal of Plasma Physics, 2022, 88(3): 905880307. DOI:10.1017/S0022377822000381 | |
7. | Jiang, D., Yip, C.-S., Jin, C.-Y. et al. Observation of non-thermal metastable ion velocity distributions in a miniaturized multi-dipole confined plasma device. Physics of Plasmas, 2022, 29(6): 063504. DOI:10.1063/5.0090948 | |
8. | Jiang, D., Yip, C.-S., Zhang, W. et al. A simple replacement of tungsten filament hot cathodes by DC heated LaB6rod and its noise characteristics with laser-induced fluorescence. Review of Scientific Instruments, 2021, 92(12): 123503. DOI:10.1063/5.0071496 |