Citation: | Xiangmei LIU, Shuren ZHANG, Shuxia ZHAO, Hongying LI, Xiaohui REN. Simulation of mode transitions in capacitively coupled Ar/O2 plasmas[J]. Plasma Science and Technology, 2024, 26(11): 115401. DOI: 10.1088/2058-6272/ad668d |
In this work, the effects of the frequency, pressure, gas composition, and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O2 plasmas were carefully studied through simulations. Three discharge modes, i.e., α, γ, and drift-ambipolar (DA), were considered in this study. The results show that a mode transition from the γ-DA hybrid mode dominated by the γ mode to the DA-α hybrid mode dominated by the DA mode is induced by increasing the frequency from 100 kHz to 40 MHz. Furthermore, the electron temperature decreases with increasing frequency, while the plasma density first decreases and then increases. It was found that the electronegativity increases slightly with increasing pressure in the low-frequency region, and it increases notably with increasing pressure in the high-frequency region. It was also observed that the frequency corresponding to the mode transition from γ to DA decreased when the secondary-electron emission coefficient was decreased. Finally, it was found that increasing the oxygen content weakens the γ mode and enhances the DA mode. More importantly, the density of oxygen atoms and ozone will increase greatly with increasing oxygen content, which is of great significance for industrial applications.
This work was supported by National Natural Science Foundation of China (Nos. 11805107 and 12275039), and the Fundamental Research Funds in Heilongjiang Provincial Universities of China (No. 145309625).
[1] |
Park J et al 2001 J. Appl. Phys. 89 20 doi: 10.1063/1.1323753
|
[2] |
Chabert P et al 2004 Phys. Plasmas 11 1775 doi: 10.1063/1.1688334
|
[3] |
Chabert P et al 2006 Plasma Sources Sci. Technol. 15 S130 doi: 10.1088/0963-0252/15/2/S15
|
[4] |
Liu X M, Song Y H and Wang Y N 2011 Chin. Phys. B 20 065205 doi: 10.1088/1674-1056/20/6/065205
|
[5] |
Jõgi I et al 2014 J. Phys. D: Appl. Phys. 47 335206 doi: 10.1088/0022-3727/47/33/335206
|
[6] |
Sharma S et al 2019 J. Phys. D: Appl. Phys. 52 365201 doi: 10.1088/1361-6463/ab2959
|
[7] |
Chatain A et al 2020 Plasma Sources Sci. Technol. 29 085019 doi: 10.1088/1361-6595/ab9b1a
|
[8] |
Grari M et al 2021 Chin. Phys. B 30 055205 doi: 10.1088/1674-1056/abd2a4
|
[9] |
Liu X M et al 2023 Plasma Sci. Technol. 25 105401 doi: 10.1088/2058-6272/acd361
|
[10] |
Zhao K et al 2019 Phys. Rev. Lett. 122 185002 doi: 10.1103/PhysRevLett.122.185002
|
[11] |
Wang L et al 2023 Plasma Sources Sci. Technol. 32 045002 doi: 10.1088/1361-6595/acc6e9
|
[12] |
Bera K et al 2009 J. Appl. Phys. 106 033301 doi: 10.1063/1.3183946
|
[13] |
Sharma S et al 2021 J. Phys. D: Appl. Phys. 54 055205 doi: 10.1088/1361-6463/abc11b
|
[14] |
Patil S et al 2022 Phys. Rev. Res. 4 013059 doi: 10.1103/PhysRevResearch.4.013059
|
[15] |
Sharma S et al 2018 Phys. Plasmas 25 080705 doi: 10.1063/1.5045816
|
[16] |
Schmidt N et al 2013 J. Phys. D: Appl. Phys. 46 505202 doi: 10.1088/0022-3727/46/50/505202
|
[17] |
Ohtsu Y et al 2016 Phys. Plasmas 23 033510 doi: 10.1063/1.4943964
|
[18] |
Sharma S et al 2022 J. Phys. D: Appl. Phys. 55 275202 doi: 10.1088/1361-6463/ac5da5
|
[19] |
Zhao K et al 2020 Plasma Sources Sci. Technol. 29 124001 doi: 10.1088/1361-6595/abc6f7
|
[20] |
Lim Y M et al 2022 J. Vac. Sci. Technol. A 40 063003 doi: 10.1116/6.0002016
|
[21] |
Sharma S et al 2021 Phys. Plasmas 28 103502 doi: 10.1063/5.0061605
|
[22] |
Sharma S, Sirse N and Turner M M 2020 Plasma Sources Sci. Technol. 29 114001 doi: 10.1088/1361-6595/abbac2
|
[23] |
Wen D Q et al 2017 Plasma Process. Polym. 14 1600100 doi: 10.1002/ppap.201600100
|
[24] |
Jin Y et al 2015 IEEE Trans. Plasma Sci. 43 3193 doi: 10.1109/TPS.2015.2459080
|
[25] |
Li S Z et al 2009 Appl. Phys. Lett. 94 111501 doi: 10.1063/1.3099339
|
[26] |
Pan J et al 2015 Phys. Plasmas 22 093515 doi: 10.1063/1.4931740
|
[27] |
Baeva M et al 2021 J. Phys. D: Appl. Phys. 54 355205 doi: 10.1088/1361-6463/ac08cc
|
[28] |
Liu G H et al 2018 Plasma Sources Sci. Technol. 27 064004 doi: 10.1088/1361-6595/aaca8c
|
[29] |
Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887
|
[30] |
Godyak V A and Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112 doi: 10.1109/TPS.1986.4316513
|
[31] |
Belenguer P and Boeuf J P 1990 Phys. Rev. A 41 4447 doi: 10.1103/PhysRevA.41.4447
|
[32] |
Lisovskiy V A and Yegorenkov V D 2004 Vacuum 74 19 doi: 10.1016/j.vacuum.2003.11.003
|
[33] |
Schulze J et al 2011 Phys. Rev. Lett. 107 275001 doi: 10.1103/PhysRevLett.107.275001
|
[34] |
Liu G H et al 2015 Plasma Sources Sci. Technol. 24 034006 doi: 10.1088/0963-0252/24/3/034006
|
[35] |
Wang L et al 2022 Plasma Sources Sci. Technol. 31 06LT01 doi: 10.1088/1361-6595/ac5ec7
|
[36] |
Proshina O V et al 2010 Plasma Sources Sci. Technol. 19 065013 doi: 10.1088/0963-0252/19/6/065013
|
[37] |
Ni T L et al 2008 Plasma Sources Sci. Technol. 17 045006 doi: 10.1088/0963-0252/17/4/045006
|
[38] |
Conti S et al 2001 Exp. Therm. Fluid Sci. 24 79 doi: 10.1016/S0894-1777(01)00040-1
|
[39] |
Park G et al 2008 Plasma Process. Polym. 5 569 doi: 10.1002/ppap.200800019
|
[40] |
Lee M H and Chung C W 2005 Phys. Plasmas 12 073501 doi: 10.1063/1.1935407
|
[41] |
Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743 doi: 10.1103/PhysRevA.52.3743
|
[42] |
Brok W J M et al 2003 J. Phys. D: Appl. Phys. 36 1967 doi: 10.1088/0022-3727/36/16/308
|
[43] |
Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 35 751 doi: 10.1088/0022-3727/35/8/306
|
[44] |
Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201 doi: 10.1088/0022-3727/45/42/425201
|
[45] |
Passchier J D P and Goedheer W J 1993 J. Appl. Phys. 73 1073 doi: 10.1063/1.353294
|
[46] |
Dittmann K, Küllig C and Meichsner J 2012 Plasma Phys. Control. Fusion 54 124038 doi: 10.1088/0741-3335/54/12/124038
|
[47] |
Gudmundsson J T, Snorrason D I and Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009 doi: 10.1088/1361-6595/aaa880
|
[48] |
Nawrocki J and Fijołek L 2013 Appl. Catal. B: Environ. 142–143 307 doi: 10.1016/j.apcatb.2013.05.028
|
[49] |
Hu Z Y et al 2022 J. Electrochem. 28 2104191 (in Chinese) doi: 10.13208/j.electrochem.210419
|
[50] |
Guzel-Seydim Z B, Greene A K and Seydim A C 2004 LWT-Food Sci. Technol. 37 453 doi: 10.1016/j.lwt.2003.10.014
|
[51] |
Li L J et al 2007 World J. Gastroenterol. 13 5989 doi: 10.3748/wjg.v13.45.5989
|
[1] | Tianyuan HUANG (黄天源), Peiyu JI (季佩宇), Jianjun HUANG (黄建军), Bin YU (于斌), Xuemei WU (吴雪梅). Modification of exposure conditions by the magnetic field configuration in helicon antenna-excited helium plasma[J]. Plasma Science and Technology, 2021, 23(1): 15403-015403. DOI: 10.1088/2058-6272/abcb55 |
[2] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[3] | Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111 |
[4] | He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e |
[5] | Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb |
[6] | Ruggero BARNI, Stefano CALDIROLA, Luca FATTORINI, Claudia RICCARDI. Tomography of a simply magnetized toroidal plasma[J]. Plasma Science and Technology, 2018, 20(2): 25102-025102. DOI: 10.1088/2058-6272/aa9028 |
[7] | OU Wei (欧巍), DENG Baiquan (邓柏权), ZENG Xianjun (曾宪俊), GOU Fujun (芶富均), XUE Xiaoyan (薛晓艳), ZHANG Weiwei (张卫卫), CAO Xiaogang (曹小岗), YANG Dangxiao (杨党校), CAO Zhi (曹智). Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma[J]. Plasma Science and Technology, 2016, 18(6): 627-633. DOI: 10.1088/1009-0630/18/6/08 |
[8] | I. M. ULANOV, M. V. ISUPOV, A. Yu LITVINSEV, P. A. MISCHENKO. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge[J]. Plasma Science and Technology, 2013, 15(4): 386-390. DOI: 10.1088/1009-0630/15/4/14 |
[9] | D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10 |
[10] | HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04 |