Citation: | Borui ZHENG, Linwu WANG, Jianbo ZHANG, Shaojie QI, Yuhong CHEN, Haodong LIU, Dongliang BIAN. Integrated design and performance optimization of three-electrode sliding discharge plasma power supply[J]. Plasma Science and Technology, 2024, 26(11): 115503. DOI: 10.1088/2058-6272/ad6814 |
The three-electrode sliding dielectric barrier discharge (TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical, thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
This work was supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174).
[1] |
Wu Y and Li Y H 2016 Plasma flow control In: Shohet J L Encyclopedia of Plasma Technology - Two Volume Set Boca Raton: CRC Press 2016: 1016
|
[2] |
Leonov S B, Adamovich I V and Soloviev V R 2016 Plasma Sources Sci. Technol. 25 063001 doi: 10.1088/0963-0252/25/6/063001
|
[3] |
Konstantinidis E 2019 Actuators 8 66 doi: 10.3390/act8030066
|
[4] |
Zheng B R et al 2020 AIAA J. 58 733 doi: 10.2514/1.J058424
|
[5] |
Kriegseis J, Simon B and Grundmann S 2016 Appl. Mech. Rev. 68 020802 doi: 10.1115/1.4033570
|
[6] |
Liu Y et al 2018 Int. J. Heat Mass Transfer 124 319 doi: 10.1016/j.ijheatmasstransfer.2018.03.076
|
[7] |
Yang B et al 2023 Aerospace 10 1016 doi: 10.3390/aerospace10121016
|
[8] |
Lei Yuan et al 2024 IEEE Trans. on Plasma Sci. 52 867 doi: 10.1109/TPS.2024.3357747
|
[9] |
Baranov S A et al 2021 Aerosp. Sci. Technol. 112 106643 doi: 10.1016/j.ast.2021.106643
|
[10] |
Nunes-Pereira J et al 2022 Polym. Adv. Technol. 33 1278 doi: 10.1002/pat.5600
|
[11] |
Zheng B R et al 2023 Chin. Phys. B 32 095203 doi: 10.1088/1674-1056/acae76
|
[12] |
Kourtzanidis K and Raja L L 2017 AIAA J. 55 1393 doi: 10.2514/1.J055473
|
[13] |
Sathyan S et al 2016 IEEE Trans. Ind. Electron. 63 6898 doi: 10.1109/TIE.2016.2582460
|
[14] |
Zhao Lisheng et al 2024 IEEE Transactions on Industrial Electronics 71 12086 doi: 10.1109/TIE.2023.3342283
|
[15] |
Liu F, Liu P Z and Chai W Y Design of high voltage surge suppression circuit for unmanned ground vehicle computer system In: 2017 IEEE International Conference on Unmanned Systems Beijing: IEEE 2017: 539
|
[16] |
Ekhtiari M et al 2018 IEEE Trans. Power Electron. 33 8101 doi: 10.1109/TPEL.2017.2771297
|
[17] |
Ashpis D E, Laun M C and Griebeler E L 2017 AIAA J. 55 2254 doi: 10.2514/1.J055816
|
[18] |
Zhang T F et al 2022 Plasma Sci. Technol. 24 114004 doi: 10.1088/2058-6272/ac742c
|
[19] |
Rodrigues F, Pascoa J and Trancossi M 2018 Exp. Therm. Fluid Sci. 90 55 doi: 10.1016/j.expthermflusci.2017.09.005
|
[20] |
Shen L, Chen Z N and Wen C Y 2020 AIAA J. 58 3368 doi: 10.2514/1.J059264
|
[21] |
Nishida H, Nakai K and Matsuno T 2017 AIAA J. 55 1852 doi: 10.2514/1.J055560
|
[1] | Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a |
[2] | Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782 |
[3] | Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30 |
[4] | ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03 |
[5] | DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13 |
[6] | ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05 |
[7] | SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06 |
[8] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |
[9] | Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21 |
[10] | BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07 |
1. | Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c | |
2. | ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043 | |
3. | Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135 | |
4. | Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060 | |
5. | Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074 | |
6. | Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071 | |
7. | Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3 | |
8. | Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104 | |
9. | Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f | |
10. | Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c | |
11. | Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589 | |
12. | Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48 | |
13. | Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701 | |
14. | ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c |