Citation: | Borui ZHENG, Linwu WANG, Jianbo ZHANG, Shaojie QI, Yuhong CHEN, Haodong LIU, Dongliang BIAN. Integrated design and performance optimization of three-electrode sliding discharge plasma power supply[J]. Plasma Science and Technology, 2024, 26(11): 115503. DOI: 10.1088/2058-6272/ad6814 |
The three-electrode sliding dielectric barrier discharge (TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical, thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
This work was supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174).
[1] |
Wu Y and Li Y H 2016 Plasma flow control In: Shohet J L Encyclopedia of Plasma Technology - Two Volume Set Boca Raton: CRC Press 2016: 1016
|
[2] |
Leonov S B, Adamovich I V and Soloviev V R 2016 Plasma Sources Sci. Technol. 25 063001 doi: 10.1088/0963-0252/25/6/063001
|
[3] |
Konstantinidis E 2019 Actuators 8 66 doi: 10.3390/act8030066
|
[4] |
Zheng B R et al 2020 AIAA J. 58 733 doi: 10.2514/1.J058424
|
[5] |
Kriegseis J, Simon B and Grundmann S 2016 Appl. Mech. Rev. 68 020802 doi: 10.1115/1.4033570
|
[6] |
Liu Y et al 2018 Int. J. Heat Mass Transfer 124 319 doi: 10.1016/j.ijheatmasstransfer.2018.03.076
|
[7] |
Yang B et al 2023 Aerospace 10 1016 doi: 10.3390/aerospace10121016
|
[8] |
Lei Yuan et al 2024 IEEE Trans. on Plasma Sci. 52 867 doi: 10.1109/TPS.2024.3357747
|
[9] |
Baranov S A et al 2021 Aerosp. Sci. Technol. 112 106643 doi: 10.1016/j.ast.2021.106643
|
[10] |
Nunes-Pereira J et al 2022 Polym. Adv. Technol. 33 1278 doi: 10.1002/pat.5600
|
[11] |
Zheng B R et al 2023 Chin. Phys. B 32 095203 doi: 10.1088/1674-1056/acae76
|
[12] |
Kourtzanidis K and Raja L L 2017 AIAA J. 55 1393 doi: 10.2514/1.J055473
|
[13] |
Sathyan S et al 2016 IEEE Trans. Ind. Electron. 63 6898 doi: 10.1109/TIE.2016.2582460
|
[14] |
Zhao Lisheng et al 2024 IEEE Transactions on Industrial Electronics 71 12086 doi: 10.1109/TIE.2023.3342283
|
[15] |
Liu F, Liu P Z and Chai W Y Design of high voltage surge suppression circuit for unmanned ground vehicle computer system In: 2017 IEEE International Conference on Unmanned Systems Beijing: IEEE 2017: 539
|
[16] |
Ekhtiari M et al 2018 IEEE Trans. Power Electron. 33 8101 doi: 10.1109/TPEL.2017.2771297
|
[17] |
Ashpis D E, Laun M C and Griebeler E L 2017 AIAA J. 55 2254 doi: 10.2514/1.J055816
|
[18] |
Zhang T F et al 2022 Plasma Sci. Technol. 24 114004 doi: 10.1088/2058-6272/ac742c
|
[19] |
Rodrigues F, Pascoa J and Trancossi M 2018 Exp. Therm. Fluid Sci. 90 55 doi: 10.1016/j.expthermflusci.2017.09.005
|
[20] |
Shen L, Chen Z N and Wen C Y 2020 AIAA J. 58 3368 doi: 10.2514/1.J059264
|
[21] |
Nishida H, Nakai K and Matsuno T 2017 AIAA J. 55 1852 doi: 10.2514/1.J055560
|
[1] | Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e |
[2] | Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783 |
[3] | Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001 |
[4] | Kai GAO (高凯), Nasr A M HAFZ, Song LI (李松), Mohammad IRZAIE, Guangyu LI (李光宇), Quratul AIN. Online plasma diagnostics of a laser-produced plasma[J]. Plasma Science and Technology, 2017, 19(1): 15506-015506. DOI: 10.1088/1009-0630/19/1/015506 |
[5] | LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05 |
[6] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08 |
[7] | CHEN Zhaoxi (陈肇玺), HU Liqun (胡立群), CHENG Yong (程勇), LEI Mingzhun (雷明准), et al.. The Design and Test of a Be Window for the ITER Radial X-Ray Camera[J]. Plasma Science and Technology, 2013, 15(11): 1160-1164. DOI: 10.1088/1009-0630/15/11/15 |
[8] | LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01 |
[9] | M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134. |
[10] | WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591. |