Advanced Search+
Yanze SONG, Jinjian ZHAO, Bowen ZHENG, Zihao XIE, Guishu LIANG, Qing XIE. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties[J]. Plasma Science and Technology, 2025, 27(1): 015501. DOI: 10.1088/2058-6272/ad8f0b
Citation: Yanze SONG, Jinjian ZHAO, Bowen ZHENG, Zihao XIE, Guishu LIANG, Qing XIE. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties[J]. Plasma Science and Technology, 2025, 27(1): 015501. DOI: 10.1088/2058-6272/ad8f0b

Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties

More Information
  • Author Bio:

    Qing XIE: 13582251628@126.com

  • Corresponding author:

    Qing XIE, 13582251628@126.com

  • Received Date: March 25, 2024
  • Revised Date: October 31, 2024
  • Accepted Date: November 03, 2024
  • Available Online: November 05, 2024
  • Published Date: December 30, 2024
  • In gas-insulated lines, basin-insulators can accumulate charge under non-uniform electric fields, distorting the field distribution and potentially causing surface flashover, which threatens the stability of power systems. In this study, Atmospheric Pressure Plasma Jet (APPJ) technology was used to deposit TiO2 on the surface of alumina/epoxy (Al2O3/EP) composites. The impact of deposition of TiO2 layer on the surface morphology and chemical composition of Al2O3/EP was studied using testing methods such as Scanning Electron Microscope, X-ray photoelectron spectroscopy, Fourier Transform Infrared Spectrometer, and Energy Dispersive Spectrometer. It was found that APPJ creates a dense, rough Ti-O layer on the Al2O3/EP surface, which bonds tightly with the substrate. The efficacy of APPJ was found to depend on processing time, with optimal results observed at 3 min, DC and AC flashover voltages increased by 29.6% and 15.7%, respectively. TiO2 layer enhances the conductivity of the resin and shallows trap levels. Through the synergistic effects of various factors, surface charges are efficiently dissipated and evenly distributed. This study not only reveals the physicochemical process of TiO2 deposition via APPJ but also integrates surface characteristics with electrical performance. The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.

  • The authors acknowledge National Natural Science Foundation of China (Nos. 52007065 and 52277147), the Fundamental Research Funds for the Central Universities (No. 2022MS071).

  • [1]
    Xie Q et al 2018 Plasma Sci. Technol. 20 025504 doi: 10.1088/2058-6272/aa97d0
    [2]
    Guo N et al 2024 Polym. Compos. 45 3536 doi: 10.1002/pc.28007
    [3]
    Liang L et al 2024 Polym. Compos. 45 181 doi: 10.1002/pc.27767
    [4]
    Li J L, Wang C and Lu K Y 2020 Polym. Bull. 77 3429 doi: 10.1007/s00289-019-02931-8
    [5]
    Chen Y F et al 2013 Study on properties of BF/EP-PU composite In: 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Shenzhen: IEEE 2013: 871
    [6]
    Shao S et al 2020 Polym. Compos. 41 4514 doi: 10.1002/pc.25728
    [7]
    Wu X et al 2024 Polym. Eng. Sci. 64 1812 doi: 10.1002/pen.26661
    [8]
    Wang Q, Li Z and Yin Y 2014 Trans. China Electrotech. Soc. 29 230 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2014.12.030
    [9]
    Li Z Y et al 2018 Surface charge accumulation of epoxy/Al2O3 nanocomposites under magnetic field In: 2018 IEEE 2nd International Conference on Dielectrics Budapest: IEEE 2018: 1
    [10]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557 doi: 10.1109/TDEI.2017.006321
    [11]
    Yamamoto O et al 1997 IEEE Trans. Dielectr. Electr. Insul. 4 413 doi: 10.1109/94.625357
    [12]
    Yan J Y et al 2021 Plasma Sci. Technol. 23 064012 doi: 10.1088/2058-6272/abef55
    [13]
    Song Y Z et al 2023 Trans. China Electrotech. Soc. 38 3984 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.221917
    [14]
    Plotnikov A P and Feklistov E G 2020 Mechanism of thin metal films destruction by electric explosion In: 2020 IEEE 3rd International Conference on Dielectrics Valencia: IEEE 2020: 177
    [15]
    Kong M G and Lee Y P 2000 Surface flashover dynamics in metallized polymer film capacitors In: 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Victoria: IEEE 2000: 816
    [16]
    Li S T 2020 High Volt. 5 122 doi: 10.1049/hve.2020.0021
    [17]
    Yu K K et al 2009 Trans. China Electrotech. Soc. 24 28 (in Chinese) doi: 10.3321/j.issn:1000-6753.2009.01.006
    [18]
    Wu G T et al 2020 Polym. Compos. 41 5281 doi: 10.1002/pc.25793
    [19]
    Shen W, Li Z and Li S T 2020 Proc. CSEE 40 7143 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.201267
    [20]
    Li F et al 2022 One-step surface functionally graded modification of insulating materials based on surface dielectric barrier discharge In: 2022 IEEE International Conference on Plasma Science Seattle: IEEE 2022: 1
    [21]
    Khalkho J S, Chevuri S V and Dagarapu B K 2023 Int. J. Metalcast. 17 272 doi: 10.1007/s40962-022-00760-6
    [22]
    Hou Y P et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2816 doi: 10.1109/TDEI.2016.7736841
    [23]
    Ding L J et al 2001 Proc. CSEE 21 27 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.2001.09.007
    [24]
    Li A et al 2015 High Volt. Eng. 41 410 (in Chinese) doi: 10.13336/j.1003-6520.hve.2015.02.008
    [25]
    Zeng J K et al 2024 Proc. CSEE 44 5810 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.230540
    [26]
    Zhu C C et al 2021 Proc. CSEE 41 4354 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.202295
    [27]
    Pinto D et al 2015 J. Nano Res. 30 9 doi: 10.4028/www.scientific.net/JNanoR.30.9
    [28]
    Wetzel B, Haupert F and Zhang M Q 2003 Compos. Sci. Technol. 63 2055 doi: 10.1016/S0266-3538(03)00115-5
    [29]
    Wetzel B et al 2006 Eng. Fract. Mech. 73 2375 doi: 10.1016/j.engfracmech.2006.05.018
    [30]
    Shao T et al 2015 IEEE Trans. Plasma Sci. 43 726 doi: 10.1109/TPS.2014.2359515
    [31]
    Kong D L et al 2021 Acta Phys. Sin 70 095205 (in Chinese) doi: 10.7498/aps.70.20202181
    [32]
    Patrocínio A O T et al 2008 Appl. Surf. Sci. 254 1874 doi: 10.1016/j.apsusc.2007.07.185
    [33]
    Du B X et al 2018 High Volt. Eng. 44 2646 (in Chinese) doi: 10.13336/j.1003-6520.hve.20180731023
    [34]
    Wang J et al 2016 Trans. China Electrotech. Soc. 31 213 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2016.15.025
    [35]
    Li S T et al 2009 Surface flashover characteristics in vacuum of ZnO Varistor+Al2O3 Ceramic+ZnO varistor insulators In: 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials Harbin: IEEE 2009: 808
    [36]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607 doi: 10.1063/1.4893884
  • Related Articles

    [1]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [2]HU Jing (胡菁), WANG Xianping (王先平), GAO Yunxia (高云霞), ZHUANG Zhong (庄重), ZHANG Tao (张涛), FANG Qianfeng (方前锋), LIU Changsong (刘长松). Microstructure and Nano-Hardness of 10 MeV Cl-Ion Irradiated T91 Steel[J]. Plasma Science and Technology, 2015, 17(12): 1088-1091. DOI: 10.1088/1009-0630/17/12/19
    [3]FAN Hongyu (范红玉), YANG Qi (杨杞), LI Xin (李欣), NI Weiyuan (倪维元), NIU Jinhai (牛金海), LIU Dongping (刘东平). Microscopic Damage of Tungsten and Molybdenum Exposed to Low-Energy Helium Ions[J]. Plasma Science and Technology, 2015, 17(4): 331-336. DOI: 10.1088/1009-0630/17/4/13
    [4]HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20
    [5]ZHU Yabin(朱亚滨), WANG Zhiguang(王志光), SUN Jianrong(孙建荣), YAO Cunfeng(姚存峰), WEI Kongfang(魏孔芳), GOU Jie(缑洁), MA Yizhun(马艺准), SHEN Tielong(申铁龙), PANG Lilong(庞立龙), SHENG Yanbin. Modification of Optical Band-gap of Si Films after Ion Irradiation[J]. Plasma Science and Technology, 2012, 14(7): 632-635. DOI: 10.1088/1009-0630/14/7/15
    [6]ZHENG Yongnan (郑永男), HUANG Qunying (黄群英), PENG Lei (彭蕾), ZUO Yi (左翼), FAN Ping (范平), ZHOU Dongmei (周冬梅), YUAN Daqing (袁大庆), WU Yichan (吴宜灿), ZHU Shengyun (朱升云). Variation of Radiation Damage with Irradiation Temperature and Dose in CLAM Steel[J]. Plasma Science and Technology, 2012, 14(7): 629-631. DOI: 10.1088/1009-0630/14/7/14
    [7]JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26
    [8]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
    [9]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
    [10]LU Dong, LI Wenjian, WU Xin, WANG Jufang, MA Shuang, LIU Qingfang, HE Jinyu, JING Xigang, DING Nan. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae[J]. Plasma Science and Technology, 2010, 12(6): 753-756.
  • Cited by

    Periodical cited type(1)

    1. Ge, W., Cai, G., Qu, C. et al. A new type of plasma irradiation-resistant amorphous TiZrHfTaW refractory multi-component alloy. Acta Materialia, 2025. DOI:10.1016/j.actamat.2025.120822

    Other cited types(0)

Catalog

    Figures(13)  /  Tables(3)

    Article views (21) PDF downloads (2) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return