Advanced Search+
Shaohua SUN, Bing SUN, Zhonglin YU, Qiuying WANG, Yuanyuan WANG, Jinglin LIU. An efficient process for decomposing perfluorinated compounds by reactive species during microwave discharge in liquid[J]. Plasma Science and Technology, 2025, 27(1): 015502. DOI: 10.1088/2058-6272/ad8f0c
Citation: Shaohua SUN, Bing SUN, Zhonglin YU, Qiuying WANG, Yuanyuan WANG, Jinglin LIU. An efficient process for decomposing perfluorinated compounds by reactive species during microwave discharge in liquid[J]. Plasma Science and Technology, 2025, 27(1): 015502. DOI: 10.1088/2058-6272/ad8f0c

An efficient process for decomposing perfluorinated compounds by reactive species during microwave discharge in liquid

More Information
  • Author Bio:

    Bing SUN: sunb88@dlmu.edu.cn

  • Corresponding author:

    Bing SUN, sunb88@dlmu.edu.cn

  • Received Date: September 01, 2024
  • Revised Date: October 29, 2024
  • Accepted Date: November 03, 2024
  • Available Online: November 05, 2024
  • Published Date: December 17, 2024
  • Microwave discharge plasma in liquid (MDPL) is a new type of water purification technology with a high mass transfer efficiency. It is a kind of low-temperature plasma technology. The reactive species produced by the discharge can efficiently act on the pollutants. To clarify the application prospects of MDPL in water treatment, the discharge performance, practical application, and pollutant degradation mechanism of MDPL were studied in this work. The effects of power, conductivity, pH, and Fe2+ concentration on the amount of reactive species produced by the discharge were explored. The most common and refractory perfluorinated compounds (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water environments are degraded by MDPL technology. The highest defluorination of PFOA was 98.8% and the highest defluorination of PFOS was 92.7%. The energy consumption efficiency of 50% defluorination (G50-F) of PFOA degraded by MDPL is 78.43 mg/kWh, PFOS is 42.19 mg/kWh. The results show that the MDPL technology is more efficient and cleaner for the degradation of perfluorinated compounds. Finally, the reaction path and pollutant degradation mechanisms of MDPL production were analyzed. The results showed that MDPL technology can produce a variety of reactive species and has a good treatment effect for refractory perfluorinated pollutants.

  • This work was supported by National Natural Science Foundation of China (Nos. 12475258, 12111530008 and 11675031). Major Scientific Research Project of Hebei Transportation Investment Group in 2024 ([202] 155). We would like to express our gratitude for the support of the Fundamental Research Funds for the Central Universities (No. 3132023503).

  • [1]
    Joshi R P and Thagard S M 2013 Plasma Chem. Plasma Process. 33 17 doi: 10.1007/s11090-013-9436-x
    [2]
    Johnson M J et al 2022 Plasma Sources Sci. Technol. 31 085001 doi: 10.1088/1361-6595/ac8074
    [3]
    Saleem M et al 2020 Chem. Eng. J. 382 123031 doi: 10.1016/j.cej.2019.123031
    [4]
    Yasuoka K, Sasaki K and Hayashi R 2011 Plasma Sources Sci. Technol. 20 034009 doi: 10.1088/0963-0252/20/3/034009
    [5]
    Ling Y et al 2024 Plasma Sci. Technol. 26 094002 doi: 10.1088/2058-6272/ad2b38
    [6]
    Wang S et al 2018 Plasma Sci. Technol. 20 075404 doi: 10.1088/2058-6272/aabac8
    [7]
    Hao C J et al 2020 IEEE Trans. Plasma Sci. 48 471 doi: 10.1109/TPS.2020.2964612
    [8]
    Saleem M et al 2022 Chemosphere 307 135800 doi: 10.1016/j.chemosphere.2022.135800
    [9]
    Singh R K et al 2020 Environ. Sci. Technol. 54 13973 doi: 10.1021/acs.est.0c02158
    [10]
    Stratton G R et al 2017 Environ. Sci. Technol. 51 1643 doi: 10.1021/acs.est.6b04215
    [11]
    Hattori Y et al 2010 J. Appl. Phys. 107 063305 doi: 10.1063/1.3319616
    [12]
    Lebedev Y A 2010 J. Phys.: Conf. Ser. 257 012016 doi: 10.1088/1742-6596/257/1/012016
    [13]
    Wang B et al 2014 Spectrosc. Spectr. Anal. 34 1182 doi: 10.3964/j.issn.1000-0593(2014)05-1182-04
    [14]
    Zhang H, Wang Y R and Zhang J 2006 Chin. J. Ind. Hyg. Occup. Dis. 24 685
    [15]
    Yin M Q et al 2006 Plasma Sci. Technol. 8 727 doi: 10.1088/1009-0630/8/6/23
    [16]
    Sun B, Kunitomo S and Igarashi C 2006 J. Phys. D: Appl. Phys. 39 3814 doi: 10.1088/0022-3727/39/17/016
    [17]
    Sun S H et al 2023 J. Environ. Chem. Eng. 11 109887 doi: 10.1016/j.jece.2023.109887
    [18]
    Sun B, Sato M and Clements J S 2000 Environ. Sci. Technol. 34 509 doi: 10.1021/es990024+
    [19]
    Herzberg G 1972 Science 177 123 doi: 10.1126/science.177.4044.123
    [20]
    Wang Q Y et al 2023 Environ. Sci. Technol. 465 142872 doi: 10.1016/j.cej.2023.142872
    [21]
    Pan Y W et al 2023 Sep. Purif. Technol. 317 123905 doi: 10.1016/j.seppur.2023.123905
    [22]
    Zhu X B et al 2011 Sep. Purif. Technol. 81 444 doi: 10.1016/j.seppur.2011.08.023
    [23]
    He Q et al 2023 J. Hazard. Mater. 454 131492 doi: 10.1016/j.jhazmat.2023.131492
    [24]
    Kim M K et al 2020 Sep. Purif. Technol. 247 116911 doi: 10.1016/j.seppur.2020.116911
    [25]
    Wang Y et al 2008 J. Hazard. Mater. 160 181 doi: 10.1016/j.jhazmat.2008.02.105
    [26]
    Cheng J H et al 2014 Chem. Eng. J. 239 242 doi: 10.1016/j.cej.2013.11.023
    [27]
    Fang C et al 2019 Chemosphere 219 36 doi: 10.1016/j.chemosphere.2018.11.206
    [28]
    Lei Y J et al 2020 Chem. Eng. J. 388 124215 doi: 10.1016/j.cej.2020.124215
    [29]
    Hayashi R et al 2015 Electr. Eng. Japan 190 9 doi: 10.1002/eej.22499
    [30]
    Yuan H X et al 2015 Front. Environ. Sci. Eng. 9 583 doi: 10.1007/s11783-014-0691-8
    [31]
    Lu D D, Zhang Y and Li J 2018 Chem. Phys. Lett. 694 93 doi: 10.1016/j.cplett.2017.11.014
    [32]
    Wang X J et al 2020 Chem. Eng. J. 389 124381 doi: 10.1016/j.cej.2020.124381
    [33]
    Sun S H et al 2023 J. Water Process Eng. 55 104091 doi: 10.1016/j.jwpe.2023.104091
    [34]
    Sun B et al 1998 J. Electrost. 43 115 doi: 10.1016/S0304-3886(97)00166-6
  • Related Articles

    [1]Jingyun ZHANG, Min ZHU, Chaohai ZHANG. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space[J]. Plasma Science and Technology, 2025, 27(1): 015402. DOI: 10.1088/2058-6272/ad862c
    [2]Shuai XU, Wenzheng LIU, Jiaying QIN, Yiwei SUN, Xitao JIANG, Qi QI. Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification[J]. Plasma Science and Technology, 2024, 26(10): 105401. DOI: 10.1088/2058-6272/ad5ca0
    [3]Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
    [4]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [5]Junfeng RONG (荣俊锋), Kaixun ZHU (朱凯勋), Minggong CHEN (陈明功). Study on purification technology of polyacrylamide wastewater by non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(5): 54008-054008. DOI: 10.1088/2058-6272/aafceb
    [6]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [7]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [8]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [9]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [10]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
  • Cited by

    Periodical cited type(8)

    1. Tan, L., Liu, Y., Yuan, Z. et al. Linear modeling analysis of the heat balance of the transmission line in high frequency critical ice melting state. International Journal of Low-Carbon Technologies, 2024. DOI:10.1093/ijlct/ctad134
    2. Li, J., Duan, X., Huang, Z. et al. Study on the formation of arc plasma on the resistive wall liquid metal current limiter. Plasma Science and Technology, 2023, 25(8): 085507. DOI:10.1088/2058-6272/acc235
    3. Hu, R., Lu, H., Chen, J. et al. Research on Automatic Maintenance Method of Flexible Maintenance Robot for Heating Defects of High Voltage Transmission Lines. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2688702
    4. Luo, X., Yin, M., Xu, C. et al. Anti-collision Alarm System of Crane Against High-Voltage Lines Based on Multimodal Information. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2682508
    5. Zhang, X., Wang, J., Wang, F. et al. Particle Simulation of Positive Streamer Discharges on Surface of DC Transmission Conductors with Coating Materials. IEEE Transactions on Plasma Science, 2022, 50(10): 3751-3759. DOI:10.1109/TPS.2022.3202648
    6. Li, J., Duan, X., Xie, W. et al. A novel fault current limiter topology design based on liquid metal current limiter. Plasma Science and Technology, 2022, 24(8): 085503. DOI:10.1088/2058-6272/ac64f0
    7. Nie, Y., Jing, Y., Zhang, M. et al. A New Method to Detect Corona Discharge in Power Equipment. IET Conference Proceedings, 2021, 2021(15): 1882-1886. DOI:10.1049/icp.2022.0184
    8. Jiang, Y., Zang, Y., Yu, G. et al. Study on the Suppression of Dielectric Barrier in Bipolar HVDC Corona Discharge. 2021. DOI:10.1109/AEERO52475.2021.9708225

    Other cited types(0)

Catalog

    Figures(10)  /  Tables(1)

    Article views (20) PDF downloads (6) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return