Advanced Search+
Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a
Citation: Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a

Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus

More Information
  • Author Bio:

    Jianqiang XU: xujq@swip.ac.cn

  • Corresponding author:

    Jianqiang XU, xujq@swip.ac.cn

  • Received Date: September 25, 2024
  • Revised Date: January 20, 2025
  • Accepted Date: January 21, 2025
  • Available Online: January 22, 2025
  • Published Date: February 19, 2025
  • The EHL-2 spherical torus at ENN is the next-generation experimental platform under conceptual design, aiming at realizing proton-boron (p-11B) thermonuclear fusion, which is an attractive pathway towards neutron-free fusion. To achieve high-performance steady-state plasma, it is extremely necessary to study the turbulence transport characteristics with high boron content in the plasma core. This study investigates the transport properties in the core internal transport barrier (ITB) region of p-11B plasma utilizing the gyrokinetic code GENE in view of the high ion temperature scenario of EHL-2, specifically focusing on the impact of boron fractions and plasma β on the microinstabilities and corresponding transport features. Numerical findings indicate that the inclusion of boron species effectively suppresses the trapped electron modes (TEMs) as well as promoting a transition from electromagnetic to electrostatic turbulence with increased boron fraction, which is a result of the suppression of microinstabilities by effective charge and mass. Moreover, it has been identified that the external E×B rotational shear has a notable inhibitory influence on transport, which can reduce the transport level by two to three orders of magnitude, especially at medium boron content. The suppressive effect of E×B on turbulence is weakened once the kinetic ballooning mode (KBM) is excited and the transport shows a rapid increase with β together with a reduction in zonal flow amplitude, which is consistent with previous findings. Therefore, it is strongly suggested that exploring advanced strategies for mitigating turbulent transport at high β regimes is necessary for the active control of plasma behavior regarding p-11B plasma-based fusion devices such as EHL-2.

  • We acknowledge Tianjin National Supercomputing Center and HPC at Southwestern Institute of Physics (SWIP) for providing computational resources. This work was partly supported by SWIP project (No. SWIP-JYHT-12423).

  • [1]
    Ono M and Kaita R 2015 Phys. Plasmas 22 040501 doi: 10.1063/1.4915073
    [2]
    Peng Y K M 2000 Phys. Plasmas 7 1681 doi: 10.1063/1.874048
    [3]
    Sykes A 2001 Plasma Phys. Control. Fusion 43 A127 doi: 10.1088/0741-3335/43/12A/309
    [4]
    Doyle E J et al 2007 Nucl. Fusion 47 S18 doi: 10.1088/0029-5515/47/6/S02
    [5]
    Terry P W et al 2015 Nucl. Fusion 55 104011 doi: 10.1088/0029-5515/55/10/104011
    [6]
    Garbet X et al 2004 Plasma Phys. Control. Fusion 46 B557 doi: 10.1088/0741-3335/46/12B/045
    [7]
    Sykes A et al 2018 Nucl. Fusion 58 016039 doi: 10.1088/1741-4326/aa8c8d
    [8]
    Horton W 1999 Rev. Mod. Phys. 71 735 doi: 10.1103/RevModPhys.71.735
    [9]
    Romanelli F 1989 Phys. Fluids B: Plasma Phys. 1 1018 doi: 10.1063/1.859023
    [10]
    Ernst D R et al 2009 Phys. Plasmas 16 055906 doi: 10.1063/1.3116282
    [11]
    Dorland W et al 2000 Phys. Rev. Lett. 85 5579 doi: 10.1103/PhysRevLett.85.5579
    [12]
    Tang W M, Connor J W and Hastie R J 1980 Nucl. Fusion 20 1439 doi: 10.1088/0029-5515/20/11/011
    [13]
    Drake J F et al 1980 Phys. Rev. Lett. 44 994 doi: 10.1103/PhysRevLett.44.994
    [14]
    Bodner G et al 2022 Nucl. Fusion 62 086020 doi: 10.1088/1741-4326/ac70ea
    [15]
    Sereda S et al 2020 Nucl. Fusion 60 086007 doi: 10.1088/1741-4326/ab937b
    [16]
    Angioni C 2021 Plasma Phys. Control. Fusion 63 073001 doi: 10.1088/1361-6587/abfc9a
    [17]
    Pusztai I, Candy J and Gohil P 2011 Phys. Plasmas 18 122501 doi: 10.1063/1.3663844
    [18]
    Moradi S et al 2012 Phys. Plasmas 19 032301 doi: 10.1063/1.3688876
    [19]
    Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
    [20]
    Liang Y F et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad981a
    [21]
    Jenko F et al 2000 Phys. Plasmas 7 1904 doi: 10.1063/1.874014
    [22]
    Görler T et al 2011 J. Comput. Phys. 230 7053 doi: 10.1016/j.jcp.2011.05.034
    [23]
    Litaudon X 2006 Plasma Phys. Control. Fusion 48 A1 doi: 10.1088/0741-3335/48/5A/S01
    [24]
    Connor J W et al 2004 Nucl. Fusion 44 R1 doi: 10.1088/0029-5515/44/4/R01
    [25]
    Ida K and Fujita T 2018 Plasma Phys. Control. Fusion 60 033001 doi: 10.1088/1361-6587/aa9b03
    [26]
    Pusztai I et al 2013 Plasma Phys. Control. Fusion 55 074012 doi: 10.1088/0741-3335/55/7/074012
    [27]
    Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421 doi: 10.1103/RevModPhys.79.421
    [28]
    Beer M A, Cowley S C and Hammett G W 1995 Phys. Plasmas 2 2687 doi: 10.1063/1.871232
    [29]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35 doi: 10.1088/0741-3335/47/5/R01
    [30]
    Bourdelle C et al 2005 Nucl. Fusion 45 110 doi: 10.1088/0029-5515/45/2/005
    [31]
    Nevins W M, Wang E and Candy J 2011 Phys. Rev. Lett. 106 065003 doi: 10.1103/PhysRevLett.106.065003
    [32]
    Pueschel M J et al 2013 Phys. Plasmas 20 102301 doi: 10.1063/1.4823717
    [33]
    Waltz R E, Dewar R L and Garbet X 1998 Phys. Plasmas 5 1784 doi: 10.1063/1.872847
    [34]
    Hahm T S 1994 Phys. Plasmas 1 2940 doi: 10.1063/1.870534
    [35]
    Barnes M et al 2011 Phys. Rev. Lett. 106 175004 doi: 10.1103/PhysRevLett.106.175004
    [36]
    Li J et al 2019 Nucl. Fusion 59 076013 doi: 10.1088/1741-4326/ab0ee2
    [37]
    Nunami M et al 2020 Phys. Plasmas 27 052501 doi: 10.1063/1.5142405
    [38]
    Dong J Q, Guzdar P N and Lee Y C 1987 Phys. Fluids 30 2694 doi: 10.1063/1.866034
    [39]
    Hsu P C and Diamond P H 2015 Phys. Plasmas 22 022306 doi: 10.1063/1.4907905
  • Related Articles

    [1]Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61
    [2]Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420
    [3]Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c
    [4]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [5]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [6]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [7]LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14
    [8]CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01
    [9]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [10]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
  • Cited by

    Periodical cited type(7)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    3. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673
    4. Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e
    5. Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135
    6. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
    7. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533

    Other cited types(0)

Catalog

    Figures(12)

    Article views (25) PDF downloads (15) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return