Advanced Search+
Jiaren WU, Tao LAN, Ge ZHUANG, Jie WU, Wenzhe MAO, Chen CHEN, Xingkang WANG, Peng DENG, Qilong DONG, Yongkang ZHOU, Tianxiong WANG, Pengcheng LU, Zeqi BAI, Yuhua HUANG, Zhengwei WU, Zian WEI, Xiaohui WEN, Hai WANG, Chu ZHOU, Ahdi LIU, Jinlin XIE, Hong LI, Weixing DING, Wandong LIU. Design and construction of two biased electrodes and preliminary experiments on the Keda Torus eXperiment[J]. Plasma Science and Technology, 2025, 27(4): 044005. DOI: 10.1088/2058-6272/ada21c
Citation: Jiaren WU, Tao LAN, Ge ZHUANG, Jie WU, Wenzhe MAO, Chen CHEN, Xingkang WANG, Peng DENG, Qilong DONG, Yongkang ZHOU, Tianxiong WANG, Pengcheng LU, Zeqi BAI, Yuhua HUANG, Zhengwei WU, Zian WEI, Xiaohui WEN, Hai WANG, Chu ZHOU, Ahdi LIU, Jinlin XIE, Hong LI, Weixing DING, Wandong LIU. Design and construction of two biased electrodes and preliminary experiments on the Keda Torus eXperiment[J]. Plasma Science and Technology, 2025, 27(4): 044005. DOI: 10.1088/2058-6272/ada21c

Design and construction of two biased electrodes and preliminary experiments on the Keda Torus eXperiment

More Information
  • Author Bio:

    Tao LAN: lantao@ustc.edu.cn

  • Corresponding author:

    Tao LAN, lantao@ustc.edu.cn

  • Received Date: July 24, 2024
  • Revised Date: December 12, 2024
  • Accepted Date: December 19, 2024
  • Available Online: December 20, 2024
  • Published Date: April 02, 2025
  • The electromagnetic turbulence in reversed field pinch (RFP) plasmas exhibits three-dimensional characteristics. Suppression of this turbulence is crucial for enhancing plasma confinement, necessitating control over the electric field or the current profile. To this end, two sets of electrodes have been designed and installed on the Keda Torus eXperiment (KTX) RFP device to manipulate the edge electric field and the edge parallel current profile. Subsequently, the edge radial electric field and edge parallel current profile control experiments are conducted. In the edge radial electric field control experiments, the edge radial electric field is altered under bias, accompanied with an increase in the electron density and plasma duration. However, under bias, both electrostatic and magnetic fluctuations are enhanced. In the edge parallel current profile control experiments, the results indicate that bias modifies the edge parallel current profile locally, leading to a localized increase in the field reversal depth and electron density. Additionally, a reduction in magnetic fluctuations is observed within the reversed field enhanced region under bias, suggesting that the bias suppresses magnetic perturbations.

  • The authors greatly thank the KTX team for their support of these experiments. This work was supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2022YFE03100004, 2017YFE0301700 and 2017YFE0301701) and National Natural Science Foundation of China (Nos. 12375226, 11875255, 11635008, 11375188 and 11975231).

  • [1]
    Tsui H Y W et al 1993 Phys. Fluids B 5 2491 doi: 10.1063/1.860734
    [2]
    Wootton A J et al 1990 Phys. Fluids B 2 2879 doi: 10.1063/1.859358
    [3]
    Escande D F et al 2000 Plasma Phys. Control. Fusion 42 B243 doi: 10.1088/0741-3335/42/12b/319
    [4]
    Hutchinson I H et al 1984 Nucl. Fusion 24 59 doi: 10.1088/0029-5515/24/1/006
    [5]
    Chapman B E et al 1998 Phys. Plasmas 5 1848 doi: 10.1063/1.872855
    [6]
    Shesterikov I et al 2013 Phys. Rev. Lett. 111 055006 doi: 10.1103/PhysRevLett.111.055006
    [7]
    Sarff J S et al 1995 Phys. Plasmas 2 2440 doi: 10.1063/1.871268
    [8]
    Taylor R J et al 1989 Phys. Rev. Lett. 63 2365 doi: 10.1103/physrevlett.63.2365
    [9]
    Craig D et al 1997 Phys. Rev. Lett. 79 1865 doi: 10.1103/PhysRevLett.79.1865
    [10]
    Craig D et al 2001 Phys. Plasmas 8 1463 doi: 10.1063/1.1365103
    [11]
    Cornelis J et al 1994 Nucl. Fusion 34 171 doi: 10.1088/0029-5515/34/2/i01
    [12]
    Weynants R R et al 1992 Nucl. Fusion 32 837 doi: 10.1088/0029-5515/32/5/i10
    [13]
    Iida M et al 2000 Jpn. J. Appl. Phys. 39 1903 doi: 10.1143/JJAP.39.1903
    [14]
    Desideri D, De Lorenzi A and Zaccaria P 1999 Fusion Eng. Des. 45 455 doi: 10.1016/s0920-3796(99)00059-9
    [15]
    Liu W D et al 2017 Nucl. Fusion 57 116038 doi: 10.1088/1741-4326/aa7f21
    [16]
    Deng T J 2020 Three-dimentional probe diagnostic and characteristics of edge plasma turbulence on Keda Torus eXperiment PhD Thesis University of Science and Technology of China, Hefei, China (in Chinese)
    [17]
    Fiksel G et al 1996 Plasma Sources Sci. Technol. 5 78 doi: 10.1088/0963-0252/5/1/010
  • Related Articles

    [1]Jian YANG (杨健), Angjian WU (吴昂键), Xiaodong LI (李晓东), Yang LIU (刘阳), Fengsen ZHU (朱凤森), Zhiliang CHEN (陈志良), Jianhua YAN (严建华), Ruijuan CHEN (陈瑞娟), Wangjun SHEN (沈望俊). Experimental and simulation investigation of electrical and plasma parameters in a low pressure inductively coupled argon plasma[J]. Plasma Science and Technology, 2017, 19(11): 115402. DOI: 10.1088/2058-6272/aa885f
    [2]Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
    [3]WU Zhonghang (吴忠航), LIANG Rongqing (梁荣庆), Masaaki NAGATSU (永津雅章), CHANG Xijiang (昌锡江). The Characteristics of Columniform Surface Wave Plasma Excited Around a Quartz Rod by 2.45 GHz Microwaves[J]. Plasma Science and Technology, 2016, 18(10): 987-991. DOI: 10.1088/1009-0630/18/10/04
    [4]ZHANG Lin (张林), OUYANG Jiting (欧阳吉庭). Microwaves Scattering by Underdense Inhomogeneous Plasma Column[J]. Plasma Science and Technology, 2016, 18(3): 266-272. DOI: 10.1088/1009-0630/18/3/09
    [5]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [6]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08
    [10]DING Liang (丁亮), HUO Wenqing (霍文青), YANG Xinjie (杨新杰), XU Yuemin (徐跃民). The Interaction of C-Band Microwaves with Large Plasma Sheets[J]. Plasma Science and Technology, 2012, 14(1): 9-13. DOI: 10.1088/1009-0630/14/1/03

Catalog

    Figures(9)  /  Tables(1)

    Article views (11) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return