Advanced Search+
D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.
Citation: D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.

Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma

More Information
  • A study of Cl2/BCl3-based inductively coupled plasma (ICP) was conducted using thick photoresist mask for anisotropic etching of 50 μm diameter holes in a GaAs wafer at a relatively high average etching rate for etching depths of more than 150 μm. Plasma etch characteristics with ICP process pressure and the percentage of BCl3 were studied in greater detail at a constant ICP coil/bias power. The measured peak-to-peak voltage as a function of pressure was used to estimate the minimum energy of the ions bombarding the substrate. The process pressure was found to have a substantial influence on the energy of heavy ions. Various ion species in plasma showed minimum energy variation from 1.85 to 7.5 eV in the pressure range of 20 to 50 mTorr. The effect of pressure and the percentage of BCl3 on the etching rate and surface smoothness of the bottom surface of the etched hole were studied for a fixed total flow rate. The etching rate was found to decrease with the percentage of BCl3, whereas the addition of BCl3 resulted in anisotropic holes with a smooth veil free bottom surface at a pressure of 30 mTorr and 42% BCl3. In addition, variation of the etching yield with pressure and etching depth were also investigated.
  • Related Articles

    [1]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [2]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [3]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [4]Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
    [5]YAN Wenyu(燕文宇), ZHANG Qiaogen(张乔根), ZHAO Junping(赵军平), CHEN Gangliang(陈纲亮), LIU Longchen(刘隆晨). Second Discharge Characteristics of Aluminum Wire Electrical Explosion Under Various Argon Pressures[J]. Plasma Science and Technology, 2014, 16(10): 948-953. DOI: 10.1088/1009-0630/16/10/08
    [6]MIAO Chunguang (苗春光), WANG Xiangqin (王相勤). Mass Deposition, Etching and Sputtering Effects of Low-Energy N + Ion Irradiation on Solid Fly Ash[J]. Plasma Science and Technology, 2013, 15(12): 1232-1236. DOI: 10.1088/1009-0630/15/12/13
    [7]ZHANG Guoping (张国平), WANG Xingquan (王兴权), LV Guohua (吕国华), et al. Deposition of Ti-Al-N Films by Using a Cathodic Vacuum Arc with Pulsed Bias[J]. Plasma Science and Technology, 2013, 15(6): 542-545. DOI: 10.1088/1009-0630/15/6/10
    [8]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
    [9]LI Sen, CHEN Qiang, LIU Zhongwei. Restraining Effect of Filaments on Applied Voltage[J]. Plasma Science and Technology, 2012, 14(1): 28-31. DOI: 10.1088/1009-0630/14/1/07
    [10]MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.

Catalog

    Article views (740) PDF downloads (357) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return