Advanced Search+
WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
Citation: WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.

Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander

Funds: supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (NO. KJCX2-YW-N16)
More Information
  • Received Date: October 28, 2010
  • An experimental method is presented to analyze the dynamic stability of the gas bearing for small cryogenic turbo-expanders. The rotation imbalance response and the shape of the rotor orbit were obtained for different speeds up to 110,000 rpm, and the critical speed of the rotor-bearing system was determined by a Bode diagram. An FFT signal analytical method was applied to identify the resonance frequency, and the waterfall plot was presented. During the whole process of speeding up to the designed speed of 110,000 rpm, the rotor-bearing works stably with no whirl instability, which is validated in a waterfall plot. Also, the tested rotor-bearing model was analyzed theoretically. It was proved that the experimental results were highly consistent with the those of theoretical calculations. Thus the experimental method proposed here to analyze the dynamic stability of the gas bearing is feasible.
  • Related Articles

    [1]Xueren HONG (洪学仁), Desheng ZHANG (张德生), Jiming GAO (高吉明), Rongan TANG (唐荣安), Peng GUO (郭鹏), Jukui XUE (薛具奎). The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel[J]. Plasma Science and Technology, 2021, 23(12): 125002. DOI: 10.1088/2058-6272/ac2ecf
    [2]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [3]S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846
    [4]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [5]P. K. KARMAKAR, B. BORAH. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling[J]. Plasma Science and Technology, 2014, 16(5): 433-447. DOI: 10.1088/1009-0630/16/5/01
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [7]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
    [8]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [9]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [10]George SAMUEL, Devi E SAVITHRI, Venugopal CHANDU. Kinetic Alfven Waves Excited by Cometary Newborn Ions with Large Perpendicular Energies[J]. Plasma Science and Technology, 2011, 13(2): 135-139.

Catalog

    Article views (644) PDF downloads (382) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return