Advanced Search+
G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
Citation: G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.

Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation

Funds: supported by the Russian Foundation for Basic Research (grant 11-08-00259) and by the Ministry of Education and Science of the Russion Federation (state contract No.14.740.11.1333)
More Information
  • Received Date: May 22, 2011
  • A new method for the generation of high charged state metal ion beams is developed. This method is based on microwave heating of vacuum arc plasma in a magnetic trap under electron cyclotron resonance (ECR) conditions. Two gyrotrons for plasma heating were used, which were with the following parameters The first is with a wave frequency of 37.5 GHz, a pulse duration of 1 ms and power of 100 kW, another is with 75 GHz, 0.15 ms and 400 kW. Two different magnetic traps were considered for vacuum arc plasma confinement. The first one is a simple mirror trap. Such system was already investigated and could provide high charge state ions. The second trap was with a cusp magnetic field configuration with native “minimum-B” field structure. Two different ways of metal plasma injection into the magnetic trap were used. The first one is an axial injection from an arc source located out of the trap, and the second is a radial injection from four arc sources mounted at the center of the trap. Both traps provide up to 200 eмA of ion beam current for platinum ions with highest charge state 10+. Ion beams were successfully extracted from the plasma and accelerated by a voltage of up to 20 kV.
  • Related Articles

    [1]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [2]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [3]Xudong WANG (王旭东), Liuwei XU (许留伟), Peng FU (傅鹏), Ji LI (李冀), Yanan WU (吴亚楠). Harmonics analysis of the ITER poloidal field converter based on a piecewise method[J]. Plasma Science and Technology, 2017, 19(12): 125602. DOI: 10.1088/2058-6272/aa86a5
    [4]YUAN Hongwen (袁红文), FU Peng (傅鹏), GAO Ge (高格), HUANG Liansheng (黄连生), SONG Zhiquan (宋执权), HE Shiying (何诗英), WU Yanan (吴亚楠), DONG Lin (董琳), WANG Min (王敏), FANG Tongzhen (房同珍). On the Sequential Control of ITER Poloidal Field Converters for Reactive Power Reduction[J]. Plasma Science and Technology, 2014, 16(12): 1147-1152. DOI: 10.1088/1009-0630/16/12/11
    [5]LI Jinchao(李金超), Song Zhiquan(宋执权), XU Liuwei(许留伟), FU Peng(傅鹏), GUO Bin(郭斌), LI Sen(李森), DONG Lin(董琳), WANG Min(王敏). Current Sharing Analysis of Arm Prototype for ITER PF Converter Bridge[J]. Plasma Science and Technology, 2014, 16(3): 283-287. DOI: 10.1088/1009-0630/16/3/20
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [7]ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16
    [8]Long Feng(龙风), Liu Fang(刘方), Wu Yu(武玉), Ni Zhipeng(倪志鹏). The First Benchmarking of ITER BR Nb3Sn Strand of CNDA[J]. Plasma Science and Technology, 2012, 14(9): 847-849. DOI: 10.1088/1009-0630/14/9/14
    [9]CHEN Peng, FU Peng, SONG Zhiquan. An Improvement on Current Sharing Characteristics of Poloidal Field (PF) AC-DC Converters[J]. Plasma Science and Technology, 2011, 13(4): 497-501.
    [10]LIU Bo, WU Yu. Test and Analysis of China's First Short Conductor Sample for ITER Toroidal Field Coils[J]. Plasma Science and Technology, 2011, 13(1): 106-110.

Catalog

    Article views (722) PDF downloads (575) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return