Advanced Search+
ZHANG Jicheng (张继成), ZHOU Minjie (周民杰), WU Weidong (吴卫东), TANG Yongjian (唐永建). Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods[J]. Plasma Science and Technology, 2013, 15(6): 552-554. DOI: 10.1088/1009-0630/15/6/12
Citation: ZHANG Jicheng (张继成), ZHOU Minjie (周民杰), WU Weidong (吴卫东), TANG Yongjian (唐永建). Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods[J]. Plasma Science and Technology, 2013, 15(6): 552-554. DOI: 10.1088/1009-0630/15/6/12

Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods

Funds: supported by National Natural Science Foundation of China (No. 60908023) and the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of China (No. 11zxfk19)
More Information
  • Received Date: July 23, 2011
  • Diamond films have great potential for micro-electro-mechanical system (MEMS) application. For device realization, precise patterning of diamond films at micrometer scale is indispensable. In this paper, simple and facile methods will be demonstrated for smart patterning of diamond films, in which two etching techniques, i.e., plasma dry etching and chemical wet etching (including isotropic-etching and anisotropic-etching) have been developed for obtaining diamond microstructures with different morphology demands. Free-standing diamond micro-gears and micro-combs were achieved as examples by using the experimental procedures. It is confirmed that as-designed diamond structures with a straight side wall and a distinct boundary can be fabricated effectively and efficiently by using such methods.
  • Related Articles

    [1]Xian CHENG (程显), Peiyuan YANG (杨培远), Guowei GE (葛国伟), Qiliang WU (吴启亮), Wei XIE (谢伟). Dynamic dielectric recovery performance of serial vacuum and SF6 gaps in HVDC interruption and its regulation method[J]. Plasma Science and Technology, 2019, 21(7): 74010-074010. DOI: 10.1088/2058-6272/ab1720
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10
    [4]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [5]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [6]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [10]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
  • Cited by

    Periodical cited type(14)

    1. Zhao, Y., Liu, Y., Liu, Z. et al. A 3D-printed fence-surface plasma source for skin treatment and its potential for personalized medical application. Journal of Physics D: Applied Physics, 2024, 57(12): 125207. DOI:10.1088/1361-6463/ad172d
    2. Xu, W., Lu, Y., Yue, X. et al. Influence of operating conditions on electron density in atmospheric pressure helium plasma jets. Journal of Physics D: Applied Physics, 2024, 57(4): 045201. DOI:10.1088/1361-6463/ad0479
    3. Apelqvist, J., Robson, A., Helmke, A. et al. AN EMERGING TECHNOLOGY FOR CLINICAL USE IN WOUND HEALING. Journal of Wound Management, 2024, 25(3): S1-S84. DOI:10.35279/jowm2024.25.03.sup01
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Machmud, A., Chang, M.B. Review on applying plasma and catalysis for abating the emissions of fluorinated compounds. Journal of Environmental Chemical Engineering, 2023, 11(6): 111584. DOI:10.1016/j.jece.2023.111584
    6. Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475-1488. DOI:10.1007/s11090-023-10404-0
    7. Liu, Z., Gao, Y., Pang, B. et al. Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma. Journal of Physics D: Applied Physics, 2022, 55(29): 295202. DOI:10.1088/1361-6463/ac6a8a
    8. Liu, F., Nie, L., Lu, X. On the green aurora emission of Ar atmospheric pressure plasma. Plasma Science and Technology, 2022, 24(5): 055408. DOI:10.1088/2058-6272/ac52ec
    9. Ouyang, W., Ding, C., Liu, Q. et al. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105215
    10. Pang, B., Liu, Z., Wang, S. et al. Discharge mode transition in a He/Ar atmospheric pressure plasma jet and its inactivation effect against tumor cells in vitro. Journal of Applied Physics, 2021, 130(15): 153301. DOI:10.1063/5.0063135
    11. Sharma, N.K., Misra, S., Varun, Choyal, Y. et al. Analysis of Discharge Characteristics of Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49(9): 2799-2805. DOI:10.1109/TPS.2021.3106792
    12. Sharma, N.K., Misra, S., Varun, Pal, U.N. Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Physics of Plasmas, 2020, 27(11): 113502. DOI:10.1063/5.0018901
    13. Nguyen, D.B., Trinh, Q.H., Hossain, M.M. et al. Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45(36): 18519-18532. DOI:10.1016/j.ijhydene.2019.06.167
    14. Nguyen, D.B., Trinh, Q.H., Mok, Y.S. et al. Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29(3): 035014. DOI:10.1088/1361-6595/ab6ebd

    Other cited types(0)

Catalog

    Article views (214) PDF downloads (1806) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return