Advanced Search+
LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05
Citation: LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05

Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

Funds: supported by the Major State Basic Research Development Program of China (973 Program) (No. 2011CB20941), Scientific Research Foundation of State Key Lab. of Power Transmission Equipment and System Security of China (No. 2007DA10512709102), National Natural Science Foundation of China (No. 51007096), and the Fundamental Research Funds for the Central Universities of China (No. CDJZR10150001)
More Information
  • Received Date: August 26, 2013
  • Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and con- tinuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O+ 2 and N + 2 are the dominant positive ions, and the values of O and O 2 densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.
  • 1.Pokryvailo A, Yankelevich Y, Nissim N, et al. 2006,IEEE Trans. Plasma Sci., 34: 104
    2 Neufeld P D, Janzen A R, and Aziz R A. 1972, J.Chem. Phys., 57: 1100
    3 Nahomy J, Ferreira C M, Gordiets B, et al. 1995, J.Phys. D, 28: 738
    4 Macheret S O, Shneider M N, and Miles R B. 2002,IEEE Trans. Plasma Sci., 30: 1301
    5 Roy S. 2005, Appl. Phys. Lett., 86: 101502
    6 Tochikubo F and Arai H. 2002, Jpn. J. Appl. Phys.,41: 844
    7 Salasoo L and Nelson J K. 1985, J. Appl. Phys., 58:2949
    8 Pancheshnyi S V and Starikovskii A Y. 2003, J. Phys.,36: 2683
    9 Shirai N, Nakazawa M, Ibuka S, et al. 2009, Jpn. J.Appl. Phys., 48: 036002
    10 Gadri R B. 1999, IEEE Trans. Plasma Sci., 27: 36
    11 Kumara S, Serdyuk Y V and Gubanski S M. 2009,IEEE Trans. Dielect. Electr. In., 16: 726
    12 Gordiets B F, Ferreira C M, Guerra V L, et al. 1995,IEEE Trans. Plasma Sci., 23: 750
    13 Yin Z Q, Zhao P P, Dong L F and Fang T Z. 2011,Acta Phys. Sin., 60: 025206
    14 Georghiou. 2005, J. Phys. D: Appl. Phys., 38: 303
    15 Hagelaar G J M and Pitchford L C. 2005, Plasma Sources Sci. Technol., 14: 722
    16 Bazelyan E M and Razhanski I M. 1988, Spark Discharge in Air. Nauka, Novosibirsk, p.165 (in Russian)
    17 Salabas A, Gousset G, and Alves L L. 2002, Plasma Sources Sci. Technol., 11: 448
    18 Xiao H Y and Raja L L. 2003, IEEE Trans. Plasma Sci., 31: 495
    19 Neufeld P D, Janzen A R, R A Aziz. 1972, J. Chem.Phys., 57: 1100
    20 Brokaw R S. 1969, Ind. Eng. Chem. Process DesignDevelop., 8: 240
    21 Bird R B, Stewart W and Lightfoot E N. 1960, Transport Phenomena. Wiley, New York
    22 Farouk T, Farouk B, Gutsol A, et al. 2008, Plasma Sources Sci. Technol, 17: 035015
    23 Marode E, Bastien F, and Bakker M A. 1979, J. Appl.Phys., 50: 140
    24 Hagelaar G J M and Pitchford L C. 2005, Plasma Sources Sci. Technol., 14: 722
    25 Arkhipenko V I, Zgirovskii S M, Kirillov A A, et al.2002, Plasma Phys. Rep., 28: 858
    26 Chapman B. 1981, Glow Discharge Processes: Sputtering and Plasma Etching. Wiley, New York
    27 Sigmond R S. 1984, J. Appl. Phys., 56: 1355
    28 Wang Q, D J Economou, and V M Donnelly. 2006, J.Appl. Phys., 100: 023301
    29 Choi J, Iza F, Lee J K, et al. 2007, IEEE Trans. Plasma Sci., 35: 1274
  • Related Articles

    [1]Guoqiang Gao, Aozheng Wang, Yaguang Ma, Bingyan You, Wei Peng, Zefeng Yang, Guangning Wu. Analysis of shrinkage characteristics of GaInSn liquid metal in pre-arc process[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adb36b
    [2]Jinjin LI, Xiongying DUAN, Zhihui HUANG, Weiying XIE, Minfu LIAO, Chang MA, Jia TAO. Study on the formation of arc plasma on the resistive wall liquid metal current limiter[J]. Plasma Science and Technology, 2023, 25(8): 085507. DOI: 10.1088/2058-6272/acc235
    [3]Jinjin LI, Xiongying DUAN, Weiying XIE, Zhihui HUANG, Minfu LIAO, Dequan WANG, Xiaotao HAN. A novel fault current limiter topology design based on liquid metal current limiter[J]. Plasma Science and Technology, 2022, 24(8): 085503. DOI: 10.1088/2058-6272/ac64f0
    [4]Mingqiu DAI (戴明秋), Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Juan LIU (刘娟), Xiaolei BI (毕晓蕾). Experimental investigation on ablation characteristics of coated and uncoated steel under 30/80 μs impulse current[J]. Plasma Science and Technology, 2019, 21(7): 75501-075501. DOI: 10.1088/2058-6272/ab1037
    [5]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [8]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [9]Ali Akbar ASHKARRAN. Seed Mediated Growth of Gold Nanoparticles Based on Liquid Arc Discharge[J]. Plasma Science and Technology, 2013, 15(4): 376-381. DOI: 10.1088/1009-0630/15/4/12
    [10]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05

Catalog

    Article views (224) PDF downloads (1042) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return