Advanced Search+
LIU Meiqin (刘美琴), LI Bolun (李博轮), LIU Chunliang (刘纯亮), Fuks MIKHAIL, Edl SCHAMILOGLU. Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode[J]. Plasma Science and Technology, 2015, 17(1): 64-70. DOI: 10.1088/1009-0630/17/1/12
Citation: LIU Meiqin (刘美琴), LI Bolun (李博轮), LIU Chunliang (刘纯亮), Fuks MIKHAIL, Edl SCHAMILOGLU. Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode[J]. Plasma Science and Technology, 2015, 17(1): 64-70. DOI: 10.1088/1009-0630/17/1/12

Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode

Funds: supported by National Natural Science Foundation of China (No. 61302010), the Foundation of Science and Technology on High Power Microwave Laboratory, Central University Foundation (2013KW07). Work at the University of New Mexico in USA was supported by ONR Grant N00014-13-1-0565
More Information
  • Received Date: January 03, 2014
  • Prticle-in-cell (PIC) simulations demonstrated that, when the relativistic magnetron with diffraction output (MDO) is applied with a 410 kV voltage pulse, or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse, electrons emitted from the cathode with high energy will strike the anode block wall. The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes, which decreases the output power in the radial output relativistic magnetron by about 15% (10% for the axial output relativistic magnetron), decreases the anode current by about 5% (5% for the axial output relativistic magnetron), and leads to a decrease of electronic efficiency by 8% (6% for the axial output relativistic magnetron). The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current, which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes. Thus, mode competition becomes more serious.
  • Related Articles

    [1]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [2]Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb
    [3]N A ASHURBEKOV, K O IMINOV, O A POPOV, G S SHAKHSINOV. Current self-limitation in a transverse nanosecond discharge with a slotted cathode[J]. Plasma Science and Technology, 2017, 19(3): 35401-035401. DOI: 10.1088/2058-6272/19/3/035401
    [4]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [5]OU Wei (欧巍), DENG Baiquan (邓柏权), ZENG Xianjun (曾宪俊), GOU Fujun (芶富均), XUE Xiaoyan (薛晓艳), ZHANG Weiwei (张卫卫), CAO Xiaogang (曹小岗), YANG Dangxiao (杨党校), CAO Zhi (曹智). Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma[J]. Plasma Science and Technology, 2016, 18(6): 627-633. DOI: 10.1088/1009-0630/18/6/08
    [6]S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
    [7]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [8]LI Shichao(李世超), HE Feng(何锋), GUO Qi(郭琦), OUYANG Jiting(欧阳吉庭). Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge[J]. Plasma Science and Technology, 2014, 16(1): 63-67. DOI: 10.1088/1009-0630/16/1/14
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10

Catalog

    Article views (324) PDF downloads (1577) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return