Advanced Search+
LI Xuechen (李雪辰), JIA Pengying (贾鹏英), DI Cong (狄聪), BAO Wenting (鲍文婷), ZHANG Chunyan (张春燕). Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet[J]. Plasma Science and Technology, 2015, 17(9): 738-742. DOI: 10.1088/1009-0630/17/9/04
Citation: LI Xuechen (李雪辰), JIA Pengying (贾鹏英), DI Cong (狄聪), BAO Wenting (鲍文婷), ZHANG Chunyan (张春燕). Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet[J]. Plasma Science and Technology, 2015, 17(9): 738-742. DOI: 10.1088/1009-0630/17/9/04

Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

Funds: supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)
More Information
  • Received Date: September 29, 2014
  • A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge charac?teristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode.
  • 1 Li X C, Jia P Y, Yuan N, et al. 2011, Phys. Plasmas,18: 043505 2 Morfill G E, Kong M G and Zimmermann J L. 2009,New J. Phys., 11: 115011 3 Chang Z, Jiang N, Zhang G, et al. 2014, J. Appl. Phys.,115: 103301 4 Zhang X, Liu D, Zhou R, et al. 2014, Appl. Phys. Lett.,104: 043702 5 Xiao D, Cheng C, Shen J, et al. 2014, J. Appl. Phys.,115: 033303 6 Kim S J, Chuang T H, Bae S H, et al. 2009, Appl.Phys. Lett., 94: 141502 7 Xian Y, Lu X, Liu J, et al. 2012, Plasmas Sources Sci.Technol., 21: 034013 8 Jiang N, Ji A, and Cao Z X J. 2009, J. Appl. Phys.,106: 013308 9 Lu X P, Cao Y, Yang P, et al. 2009, IEEE Trans.Plasma Sci., 37: 668 10 Li X C, Yuan N, Jia P Y, and Chen J Y. 2010, Phys.Plasmas, 17: 093504 11 Wu S, Wang Z, Huang Q, et al. 2012, Phys. Plasmas,19: 103503 12 Hong Y C, and Uhm H S. 2007, Phys. Plasmas, 14:3503 13 Machala Z, Laux C and Kruger C. 2005, IEEE Trans.Plasma Sci., 33: 320 14 Li X, Di C, Jia P, and Bao W. 2013, Appl. Phys. Lett.,103: 144107 15 Walsh J L, and Kong M G. 2008, Appl. Phys. Lett.,93: 111501 16 Stoffels E, Kieft I E, Sladek R E J, et al. 2006, Plasma Sources Sci. Technol., 15: S169 17 Van D L E P, Stoffels E, and Steinbuch M. 2006,Plasma Sources Sci. Technol., 15: 582 18 Li Q, Li J, Zhu W, Zhu X, and Pu Y. 2009, Appl.Phys. Lett., 95: 141502 19 Walsh J L, Shi J J, and Kong M G. 2006, Appl. Phys.Lett., 88: 171501 20 Shao T, Zhang C, Yu Y, et al. 2012, Vacuum, 86: 876 21 Niu Z, Zhang C, Shao T. 2013, Surface and Coatings Technol., 228: S578 22 Joh H M, Kim S J, Chung T H, and Leem S H. 2012,Appl. Phys. Lett., 101: 053703 23 Breden D, Miki K, and Raja L L. 2011, Appl. Phys.Lett., 99: 111501 24 Xian Y, Lu X, Wu S, et al. 2012, Appl. Phys. Lett.,100: 123702 25 Li S, Huang W, and Wang D. 2009, Phys. Plasmas,16: 093501 26 Li Q, Li J T, Zhu W C, et al. 2009, Appl. Phys. Lett.,95: 141502
  • Related Articles

    [1]Xinluo TIAN, Heping LI, Liyu ZHENG, Fangjian LI, Zhongyang ZHENG, Shengming YIN, Xinyun WANG, Youwei YAN. Effect of Cr2O3 nanosheet insertion on the deuterium permeation behavior of a Cr-Zr-O coating[J]. Plasma Science and Technology, 2022, 24(12): 124017. DOI: 10.1088/2058-6272/aca7ae
    [2]Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Haijun REN. Anomalous transport driven by ion temperature gradient instability in an anisotropic deuterium-tritium plasma[J]. Plasma Science and Technology, 2022, 24(2): 025104. DOI: 10.1088/2058-6272/ac42bc
    [3]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [4]Houyin WANG (王厚银), Jiansheng HU (胡建生), Yaowei YU (余耀伟), Bin CAO (曹斌), Jinhua WU (吴金华), Guoqing SHEN (沈国清), Zhao WAN (万朝), EAST Contributors. Higher resolution helium measuring system for deuterium plasma on EAST tokamak via normal Penning gauge[J]. Plasma Science and Technology, 2017, 19(1): 15601-015601. DOI: 10.1088/1009-0630/19/1/015601
    [5]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [6]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [7]HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20
    [8]ZHU Dahuan (朱大焕), LIU Yang (刘洋), CHEN Junling (陈俊凌), ZHOU Zhangjian (周张健), YAN Rong (鄢容). Surface Cracking Behaviors of Ultra-Fine Grained Tungsten Under Edge Plasma Loading in the HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(6): 605-608. DOI: 10.1088/1009-0630/15/6/21
    [9]Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18
    [10]Takanori MIYAMOTO, Shuichi TAKAMURA, Hiroaki KURISHITA. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures[J]. Plasma Science and Technology, 2013, 15(2): 161-165. DOI: 10.1088/1009-0630/15/2/17

Catalog

    Article views (431) PDF downloads (1140) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return