Advanced Search+
ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
Citation: ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04

Deuterium Retention in SiC-Coated Graphite Tiles of EAST

Funds:  supported partially by National Natural Science Foundation of China (Nos.10905070, 10875148 and 10728510), the Knowledge Innovation Program of the Chinese Academy of Sciences, the National Magnetic Confinement Fusion Science Program of China (No.2009GB106005)
More Information
  • Received Date: April 10, 2012
  • Fuel retention and recycling in plasma facing materials is a crucial issue for fusion devices, especially for the long pulse discharge devices. In this work, the deuterium retention and the surface erosion of SiC-coated graphite tiles exposed to EAST plasmas have been studied by post-mortem analyses, i.e., thermal desorption spectroscopy (TDS), secondary ion mass spec- troscopy (SIMS) and scanning electron microscopy (SEM). The results show that the sample cut from the high field side (HF) tile has been intensely eroded due to deuterium bombardment on plasma facing surfaces in the initial phase of discharges and trapped highest amount of deuterium. Lower deuterium retention has been found in the inner divertor sample, which is presumably due to the particular exposure history in the 2010 spring campaign.
  • 1 Tanabe T, Masaki K, Sugiyama K, et al. 2009, Phys.Scr., T138: 014006;
    2 Penzhorn R D, Goad J P, Bekris N, et al. 2001, FusionEng. Des., 56-57: 105;
    3 Likonen J, Coad J P, Hole D E, et al. 2009, J. Nucl.Mater., 390-391: 631;
    4 Roth J, Tsitrone E, Loarte A, et al. 2009, J. Nucl.Mater., 390-391: 1;
    5 Loarer T, Brosset C, Bucalossi J, et al. 2007, Nucl.Fusion, 47: 1112;
    6 Federici G, B, Brooks J N, Iseli M, et al. 2001, Phys.Scr., T91: 76;
    7 Roth J, Tsitrone E, Loarer T, et al. 2008, Plasma Phys.Control. Fusion, 50: 103001;
    8 Hu J S, Wang X M, Li J H, et al. 2009, Fusion Eng.Des., 84: 2167;
    9 Luo G N, Zhang X D, Yao D M, et al. 2007, Phys.Scr., T128: 1;
    10 Xie C Y, Chen J L, Li J G, et al. 2007, J. Nucl. Mater.,363-365: 282;
    11 Oya Y, Onishi Y, Okuno K, et al. 2005, Mater. Trans.,46: 552;
    12 Li Q, Wang W J, Yang Z S, et al. 2011, Fusion Eng.Des., 86: 1689;
    13 Widdowson A, Coad J P, Likonent J. 2010, An overview of fuel retention determined by post mortem analysis of tiles removed from JET. 10th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, San Diego;
    14 Franzen P, Behrisch R, Garcia-Rosales C, et al. 1997,Nucl. Fusion, 37: 1375
  • Related Articles

    [1]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [4]Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]FENG Fan (冯帆), ZHANG Yongliang (张永亮), YAN Jia (闫佳), LIU Fucheng (刘富成), DONG Lifang (董丽芳), HE Yafeng (贺亚峰). Cycloid Motions of Aggregates in a Dust Plasma[J]. Plasma Science and Technology, 2016, 18(1): 67-71. DOI: 10.1088/1009-0630/18/1/12
    [7]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]MA Donglin (马栋林), ZHANG Xijun (张玺君), ZHANG Liping (张丽萍). The Effects of Inhomogeneity and Adiabatic Dusty Charge Fluctuation on Solitary Waves[J]. Plasma Science and Technology, 2013, 15(1): 7-11. DOI: 10.1088/1009-0630/15/1/02
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.
  • Cited by

    Periodical cited type(4)

    1. Fu, J., Zhang, L., Zhang, M. Effect of dust size distribution and nonadiabatic charge variation on dispersion relation for linear waves in inhomogeneous complex plasmas. AIP Advances, 2024, 14(3): 035004. DOI:10.1063/5.0194497
    2. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589
    3. Zhang, L.P., Zheng, J.Q. Dust acoustic shock waves in nonuniform dusty plasmas with kappa-distributed ions and electrons, nonadiabatic dust charge fluctuation and dust size distribution. Indian Journal of Physics, 2023. DOI:10.1007/s12648-023-03036-9
    4. Zhang, L., Zheng, J., Liu, C. et al. The shock wave solutions of modified ZK Burgers equation in inhomogeneous dusty plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(3): 249-257. DOI:10.1515/zna-2021-0283

    Other cited types(0)

Catalog

    Article views (206) PDF downloads (1158) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return