Advanced Search+
Emre SEKER, Mehmet Ali KILICARSLAN, Serdar POLAT, Emre OZKIR, Suat PAT. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?[J]. Plasma Science and Technology, 2016, 18(4): 417-423. DOI: 10.1088/1009-0630/18/4/15
Citation: Emre SEKER, Mehmet Ali KILICARSLAN, Serdar POLAT, Emre OZKIR, Suat PAT. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?[J]. Plasma Science and Technology, 2016, 18(4): 417-423. DOI: 10.1088/1009-0630/18/4/15

Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?

Funds: supported by the Department of Scientific Research, Eskisehir Osmangazi University, Turkey (No. 201441045)
More Information
  • Received Date: March 16, 2015
  • This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma (NTAP) treatment. One hundred and sixty discs of titanium (Ti) (n:40), cobalt chromium (Co-Cr) (n:40), yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) (n:40) and polymethylmethacrylate (PMMA) (n:40) materials were machined and smoothed with silicon carbide papers. The surface roughness was evaluated in a control group and in groups with different plasma exposure times
    [1-3-5 s]. The average surface roughness (Ra) and contact angle (CA) measurements were recorded via an atomic force microscope (AFM) and tensiometer, respectively. Surface changes were examined with a scanning electron microscope (SEM). Data were analyzed with two-way analysis of variance (ANOVA) and the Tukey HSD test α=0.05). According to the results, the NTAP surface treatment significantly affected the roughness and wettability properties (P< 0.05). SEM images reveal that more grooves were present in the NTAP groups. With an increase in the NTAP application time, an apparent increment was observed for Ra, except in the PMMA group, and a remarkable reduction in CA was observed in all groups. It is concluded that the NTAP technology could enhance the roughening and wetting performance of various dental materials.
  • 1 Kern M, Thompson V P. 1995, J. Prosthodont., 4: 16 2 Mair L, Padipatvuthikul P. 2010, Dent. Mater., 26: 17 3 Livaditis G J, Thompson V P. 1982, J. Prosthet. Dent.,47: 52 4 Miyakawa O, Watanabe K, Okawa S, et al. 1996, Dent.Mater. J., 15: 11 5 Peutzfeldt A, Asmussen E. 1996, Am. J. Dent., 9: 65 6 Darvell B W, Samman N, Luk W K, et al. 1995, J.Dent., 23: 319 7 Kern M, Thompson V P. 1993, Dent. Mater., 9: 151 8 Matinlinna J P, Lassila L V, Vallittu P K. 2007, Dent.Mater., 23: 1173 9 Sorensen J A, Engelman M J, Torres T J, et al. 1991,Int. J. Prosthodont., 4: 17 10 Derand T, Molin M, Kvam K. 2005, Dent. Mater., 21:1158 11 Zhang Y, Lawn B R, Malament K A, et al. 2006, Int.J. Prosthodont., 19: 442 12 Kumbuloglu O, Lassila L V, User A, et al. 2006, Oper.Dent., 31: 248 13 Aboushelib M N, Feilzer A J, Kleverlaan C J. 2010, J.Prosthodont., 19: 340 14 Piascik J R, Swift E J, Thompson J Y, et al. 2009,Dent. Mater., 25: 1116 15 Ozden N, Akaltan F, Suzer S, et al. 1999, J. Prosthet.Dent., 82: 680 16 Cunningham J L. 1993, J. Dent., 21: 274 17 Gunne J, Rangert B, Glanz P O, et al. 1997, Int. J.Oral Maxillofac. Implants, 12: 335 18 Chung K H, Chung C Y, Chan D C N. 2008, J. Oral Rehabil., 35: 268 19 Perdig? ao J. 2007, Dent. Clin. North. Am., 51: 333 20 Marmur A. 2004, Langmuir, 20: 1317 21 Silva N R, Coelho P G, Valverde G B, et al. 2011, J.Biomed. Mater. Res. B. Appl. Biomater., 99: 199 22 Ayad M F, Johnston W M, Rosenstiel S F. 2009, J.Prosthet. Dent., 102: 81 23 Yanagida H, Tanoue N, Ide T, et al. 2009, Odontology,97: 103 24 Nishigawa G, Maruo Y, Oka M, et al. 2004, Dent.Mater. J., 23: 545 25 Duske K, Koban I, Kindel E, et al. 2012, J. Clin. Periodontol., 39: 400 26 Zhang J, Xiao D, Fang S, et al. 2015, Plasma Science and Technology, 17: 202 27 Vogelsang A, Ohl A, Steffen H, et al. 2010, Plasma Process Polym., 7: 16 28 Lee S, Kim Y K. 2009, Plasma Process Polym., 6: 525 29 Nishigawa G, Maruo Y, Oka M, et al. 2003, J. Oral Rehabil., 30: 1081 30 Fang Z, Yang H, Qiu Y. 2010, IEEE Trans. Plasma Sci., 38: 1615 31 Zhong Shaofeng, Meng Yuedong, OU Qiongrong, et al.2005, Plasma Science and Technology, 7: 2955 32 Derand T, Molin M, Kvam K. 2006, Acta Odontol.Scand., 64: 227 33 Valverde G B, Coelho P G, Janal M N, et al. 2013, J.Dent., 41: 51 34 Teraoka F, Nakagawa M, Hara M. 2006, Dent. Mater.J., 25: 560 35 McCracken M. 1999, J. Prosthodont., 8: 40 36 Artopoulou I I, O’Keefe K L, Powers J M. 2006, J.Prosthodont., 15: 172 37 Amaral R, Ozcan M, Bottino M A, et al. 2006, Dent.Mater., 22: 283 38 Elsaka S E, Swain M V. 2011, Dent. Mater., 27: 1213 39 Hu Q, Xu J, Zhou Z, et al. 2013, Plasma Science and Technology, 15: 429 40 Shahidi S, Ghoranneviss M. 2013, Plasma Science and Technology, 15: 1031
  • Related Articles

    [1]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [2]Chundong HU (胡纯栋), Yahong XIE (谢亚红), Yongjian XU (许永建), Caichao JIANG (蒋才超), Jianglong WEI (韦江龙), Yuming GU (顾玉明), Qinglong CUI (崔庆龙), Lizhen LIANG (梁立振), Shiyong CHEN (陈世勇), Yuanlai XIE (谢远来). Achievement of 1000 s plasma generation of RF source for neutral beam injector[J]. Plasma Science and Technology, 2019, 21(2): 22001-022001. DOI: 10.1088/2058-6272/aaf1e0
    [3]Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
    [4]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [5]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [6]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [7]Tae-Seong KIM, Seung Ho JEONG, Doo Hee CHANG, Kwang Won LEE, Sang-Ryul IN. Performance of a New Ion Source for KSTAR Tokamak Plasma Heating[J]. Plasma Science and Technology, 2014, 16(6): 620-624. DOI: 10.1088/1009-0630/16/6/15
    [8]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [9]GAO Jin (高进), GU Pingdao (顾平道), YUAN Li (袁里), ZHONG Fangchuan (钟方川). Degradation of Dye Wastewater by ns-Pulse DBD Plasma[J]. Plasma Science and Technology, 2013, 15(9): 928-934. DOI: 10.1088/1009-0630/15/9/18
    [10]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08

Catalog

    Article views (445) PDF downloads (996) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return