Advanced Search+
Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
Citation: Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357

Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51777091 and 51677083).
More Information
  • Received Date: October 10, 2017
  • A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
  • [1]
    Wang T et al 2012 Plasma Chem. Plasma Process. 32 1189
    [2]
    Liang W J et al 2011 J. Electrostat. 69 206
    [3]
    Chen J and Xie Z M 2013 J. Hazard. Mater. 261 38
    [4]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [5]
    Yang G Q, Zhang G J and Zhang W Y 2011 Plasma Sci. Technol. 13 617
    [6]
    Mastanaiah N et al 2013 Plasma Process. Polym. 10 1120
    [7]
    Eto H et al 2008 Plasma Process. Polym. 5 269
    [8]
    Sung Y M and Sakoda T 2005 Surf. Coat. Technol. 197 148
    [9]
    Fang Z et al 2008 J. Electrostat. 66 421
    [10]
    Tu X et al 2011 J. Phys. D: Appl. Phys. 44 274007
    [11]
    Tu X and Whitehead J C 2012 Appl. Catal. B 125 439
    [12]
    Peters F et al 2016 Plasma Sci. Technol. 18 406
    [13]
    Ma H B et al 2002 Plasma Chem. Plasma Process. 22 239
    [14]
    Kolb T et al 2012 Plasma Chem. Plasma Process. 32 1139
    [15]
    Dou B J et al 2013 J. Electrostat. 71 939
    [16]
    De Geyter N et al 2007 Surf. Coat. Technol. 201 7066
    [17]
    Wang C Q, Zhang G X and Wang X X 2012 Vacuum 86 960
    [18]
    YangD Z et al 2013 Appl. Phys. Lett. 102 194102
    [19]
    Shao T et al 2008 J. Phys. D: Appl. Phys. 41 215203
    [20]
    Shao T et al 2011 Plasma Sci. Technol. 13 591
    [21]
    Zhang L et al 2017 Plasma Sci. Technol. 19 064006
    [22]
    Jiang H et al 2011 IEEE Trans. Plasma Sci. 39 2076
    [23]
    Zhang S et al 2013 J. Appl. Phys. 114 163301
    [24]
    Kettlitz M et al 2013 Plasma Sources Sci. Technol. 22 025003
    [25]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
    [26]
    Liu S H and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
    [27]
    Liu S H and Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144
    [28]
    Zhang C et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304
    [29]
    Pipa A V et al 2012 Rev. Sci. Instrum. 83 075111
    [30]
    Liu F, Huang G and Ganguly B 2010 Plasma Sources Sci. Technol. 19 045017
    [31]
    Sadat H et al 2009 Appl. Therm. Eng. 29 1259
    [32]
    Sadat H et al 2010 J. Electrostat. 68 27
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [3]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59
    [6]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [7]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [8]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.

Catalog

    Article views (272) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return