Advanced Search+
Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
Citation: Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903

Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

Funds: The authors gratefully acknowledge the support of National Natural Science Foundation of China (No. 11375123).
More Information
  • Received Date: February 20, 2017
  • Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
  • [1]
    Gurney K R et al 2009 Environ. Sci. Technol. 43 5535
    [2]
    Pardia B, Iniyan S and Goic R 2011 Renew. Sustain. Energy Rev. 15 1625
    [3]
    Thirugnanasambandam M, Iniyan S and Goic R 2010 Renew. Sustain. Energy Rev. 14 312
    [4]
    Lebouvier A et al 2013 Energy Fuels 27 2712
    [5]
    Li D H et al 2009 Int. J. Hydrogen Energy 34 308
    [6]
    Tomishige K, Chen Y G and Fujimoto K 1999 J. Catal. 181 91
    [7]
    Zhang Y P et al 2016 Chem. J. Chin. Univ. 37 1521 (in Chinese)
    [8]
    Zeng W X and Tu X 2017 J. Phys. D: Appl. Phys. 50 184004
    [9]
    Moss M S et al 2017 Plasma Sources Sci. Technol. 26 035009
    [10]
    Horváth G et al 2008 J. Phys. D: Appl. Phys. 41 225207
    [11]
    Kim S C and Chun Y N 2014 Environ. Technol. 35 2940
    [12]
    Heijkers S et al 2015 J. Phys. Chem. C 119 12815
    [13]
    Aerts R, Somers W and Bogaerts A 2015 ChemSusChem 8 702
    [14]
    Ponduri S et al 2016 J. Appl. Phys. 119 093301
    [15]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [16]
    Ozkan A, Bogaerts A and Reniers F 2017 J. Phys. D: Appl. Phys. 50 084004
    [17]
    Paulussen S et al 2010 Plasma Sources Sci. Technol. 19 034015
    [18]
    Brehmer F et al 2014 J. Appl. Phys. 116 123303
    [19]
    Aerts R, Martens T and Bogaerts A 2012 J. Phys. Chem. C 116 23257
    [20]
    Ozkan A et al 2016 Plasma Sources Sci. Technol. 25 025013
    [21]
    Manley T C 1943 J. Electrochem. Soc. 84 83
    [22]
    Valdivia-Barrientos R et al 2006 Plasma Sources Sci. Technol. 15 237
    [23]
    Fridman A 2008 Plasma Chemistry (London: Cambridge University Press)
    [24]
    Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011
    [25]
    Yu Q Q et al 2012 Plasma Chem. Plasma Process. 32 153
    [26]
    Ramakers M et al 2015 Plasma Process. Polym. 12 755
  • Related Articles

    [1]Aigerim TAZHEN, Merlan DOSBOLAYEV, Tlekkabul RAMAZANOV. Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow[J]. Plasma Science and Technology, 2022, 24(5): 055403. DOI: 10.1088/2058-6272/ac5018
    [2]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [3]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [4]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [5]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [6]WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Ou, Y., Wu, J. et al. Experimental Investigation on Plume Characteristics of PTFE-Filled Carbon, Graphite, Graphene for Laser-Assisted Pulsed Plasma Thruster. Applied Sciences (Switzerland), 2023, 13(16): 9283. DOI:10.3390/app13169283
    2. Li, Y., Ou, Y., Wu, J. et al. Dynamic simulation on laser-metal interaction in laser ablation propulsion considering moving interface, finite thermal wave transfer, and phase explosion. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.03.039
    3. Peng, Z., Li, Z., Song, F. et al. Ion Electric Propulsion System Electric Breakdown Problems: Causes, Impacts and Protection Strategies. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3312719
    4. Xu, Y., Yang, L., Zhou, D. et al. Experimental study on the dynamics and parameters of nanosecond laser-induced aluminum plasma. Journal of Physics D: Applied Physics, 2022, 55(32): 325201. DOI:10.1088/1361-6463/ac6a27
    5. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    6. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (209) PDF downloads (596) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return