Advanced Search+
Ming ZENG (曾明), Ovidiu TESILEANU. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers[J]. Plasma Science and Technology, 2017, 19(7): 70502-070502. DOI: 10.1088/2058-6272/aa6437
Citation: Ming ZENG (曾明), Ovidiu TESILEANU. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers[J]. Plasma Science and Technology, 2017, 19(7): 70502-070502. DOI: 10.1088/2058-6272/aa6437

High-flux electron beams from laser wakefield accelerators driven by petawatt lasers

Funds: This work is supported by Extreme Light Infrastructure—Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and European Union through the European Regional Development Fund. The EPOCH code project was funded by the UK EPSRC grants EP/G054950/1, EP/G056803/1, EP/G055165/1 and EP/ M022463/1.
More Information
  • Laser wakefield accelerators (LWFAs) are considered to be one of the most competitive nextg-eneration accelerator candidates. In this paper, we will study the potential high-flux electron beam production of an LWFA driven by petawatt-level laser pulses. In our three-dimensional particle-in-cell simulations, an optimal set of parameters gives ~40 nC of charge with 2 PW laser power, thus ~400 kA of instantaneous current if we assume the electron beam duration is 100 fs. This high flux and its secondary radiation are widely applicable in nuclear and QED physics, industrial imaging, medical and biological studies.
  • Related Articles

    [1]Hanghang WANG (王行行), Liyan ZHANG (张丽艳), Wenqi LU (陆文琪), Jun XU (徐军). Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering[J]. Plasma Science and Technology, 2020, 22(3): 34010-034010. DOI: 10.1088/2058-6272/ab618a
    [2]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [3]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [4]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [5]Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
    [6]CHEN Jiuxiang(陈玖香), WANG Weizhong(王伟仲), Jyh Shiram CHERNG, CHEN Qiang(陈强). High Growth Rate of Microcrystalline Silicon Films Prepared by ICP-CVD with Internal Low Inductance Antennas[J]. Plasma Science and Technology, 2014, 16(5): 502-505. DOI: 10.1088/1009-0630/16/5/10
    [7]WANG Qing (王庆), YUE Xiangji (岳向吉), BA Dechun (巴德纯), ZHANG Yichen (张以忱), et al.. Influence of Hysteretic Behaviour in Reactive Magnetron Sputtering on the Crystal Structure and Characteristics of Aluminium Oxide Films[J]. Plasma Science and Technology, 2013, 15(8): 807-811. DOI: 10.1088/1009-0630/15/8/17
    [8]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [9]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (280) PDF downloads (626) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return