Advanced Search+
Antonio MERCADO-CABRERA, Rosendo PEÑA-EGUILUZ, Régulo LóPEZ-CALLEJAS, Bethsabet JARAMILLO-SIERRA, Raúl VALENCIA-ALVARADO, Benjamín RODRíGUEZ-MéNDEZ, Arturo E MUÑOZ-CASTRO. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution[J]. Plasma Science and Technology, 2017, 19(7): 75501-075501. DOI: 10.1088/2058-6272/aa6715
Citation: Antonio MERCADO-CABRERA, Rosendo PEÑA-EGUILUZ, Régulo LóPEZ-CALLEJAS, Bethsabet JARAMILLO-SIERRA, Raúl VALENCIA-ALVARADO, Benjamín RODRíGUEZ-MéNDEZ, Arturo E MUÑOZ-CASTRO. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution[J]. Plasma Science and Technology, 2017, 19(7): 75501-075501. DOI: 10.1088/2058-6272/aa6715

Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution

Funds: This work received financial support from CONACYT, Mexico.
More Information
  • Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar–10% O2, 80% Ar–20% O2 and 0% Ar–100% O2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ~0.0115 S m-1 up to ~0.0430 S m-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.
  • Related Articles

    [1]Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6
    [2]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [3]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [4]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [5]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [6]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [7]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [8]Qingsong GAO (高青松), Yongjun LIU (刘永军), Bing SUN (孙冰). Characteristics of gas-liquid diaphragm discharge and its application on decolorization of brilliant red B in aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115404. DOI: 10.1088/2058-6272/aa8593
    [9]Kefeng SHANG (商克峰), Hao WANG (王浩), Jie LI (李杰), Na LU (鲁娜), Nan JIANG (姜楠), Yan WU (吴彦). Activation of peroxydisulfate by gas–liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol[J]. Plasma Science and Technology, 2017, 19(6): 64017-064017. DOI: 10.1088/2058-6272/aa6616
    [10]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11

Catalog

    Article views (295) PDF downloads (890) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return