Advanced Search+
Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
Citation: Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5

The structure optimization of gas-phase surface discharge and its application for dye degradation

Funds: The authors would like to thank National Natural Science Foundation of China (No. 51477025)
More Information
  • Received Date: October 30, 2017
  • A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.
  • [1]
    Borthakur P et al 2017 Appl. Surf. Sci. 423 752
    [2]
    Omidvar A, Jaleh B and Nasrollahzadeh M 2017 J. Colloid Interface Sci. 496 44
    [3]
    Shajahan A et al 2017 Int. J. Biol. Macromol. 104 1449
    [4]
    Kumar M S et al 2017 Chem. Eng. Process. 122 288–95
    [5]
    Mahmoodi N M, Keshavarzi S and Ghezelbash M 2017 J. Environ. Chem. Eng. 5 3684
    [6]
    Dellamatrice P M et al 2017 Braz. J. Microbiology 48 25
    [7]
    Zhang R B et al 2004 J. Environ. Sci. 16 808
    [8]
    Reiff S C and Laverne J A 2017 Radiat. Phys. Chem. 131 46
    [9]
    Sun B M, Yin S E and Gao X D 2009 Development prospects of non-thermal plasma technology used in the thermal power plants in China Int. Conf. on Energy Sustainability Collocated with the Heat Transfer and Interpack09 Conf. (ASME)(San Francisco, CA) (https://doi.org/10.1115/ ES2009-90012)
    [10]
    Zhang H et al 2011 Thin Solid Films 520 861
    [11]
    Wang T C et al 2016 J. Hazard. Mater. 302 65
    [12]
    Zhang Q et al 2017 Sep. Purif. Technol. 187 334
    [13]
    Tu X et al 2011 J. Phys. D: Appl. Phys. 44 274007
    [14]
    Association A P H 1960 Water Pollution Control Federation 11th edn (American Public Health Association)
    [15]
    Li J et al 2015 High Voltage Eng. 41 2844 (in Chinese)
    [16]
    Yue S 2015 Study on the structural optimization and power supply of a surface dielectric barrier discharge device PhD Thesis Dalian University of Technology (in Chinese)
    [17]
    Pan J and Fang Z 2012 High Voltage Eng. 38 1132
    [18]
    Zhang Y et al 2015 High Voltage Eng. 41 539 (in Chinese)
    [19]
    Mi J C and Du C 2011 Chin. Phys. B 20 273
    [20]
    Zhang D D 2010 Investigation on degradation of organic dyes wastewater by gas phase surface discharge plasma using liquid electrode Ph.D Dalian: Dalian University of Technology (in Chinese)
    [21]
    Wang B et al 2017 Chem. Eng. Sci. 168 90
    [22]
    Zhang C et al 2017 Chemosphere 191 527
    [23]
    Huang F et al 2012 J. Electrostat. 20 43
    [24]
    Benetoli L O et al 2012 J. Hazard. Mater. 237 55
    [25]
    Yin H et al 2014 Adv. Oxid. Technol. 17 265
    [26]
    Demeestere K et al 2015 Personal Care Products in the Aquatic Environment (Springer)(https://doi.org/10.1007/ 698_2014_298)
    [27]
    Huang F et al 2010 Chem. Eng. J. 162 250
  • Related Articles

    [1]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [4]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
    [5]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [6]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [7]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17
    [10]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
  • Cited by

    Periodical cited type(33)

    1. Zhang, T., Kyere-Yeboah, K., Ge, Y. et al. Effects of sodium persulfate and percarbonate on the degradation of 2, 4- dichlorophenol in a dielectric barrier discharge reactor. Chemical Engineering and Processing - Process Intensification, 2024. DOI:10.1016/j.cep.2024.109953
    2. Lavanya, A.. Treatment and nutrient recovery from landfill leachate by sequential persulfate oxidation and struvite precipitation: An evaluation of technical feasibility. Environmental Science and Pollution Research, 2024. DOI:10.1007/s11356-024-34825-2
    3. Ayadi, A., Jellouli Ennigrou, D., Proietto, F. et al. Electrochemical Degradation of Phenol in Aqueous Solutions Using Activated Carbon-ZnO Composite. Environmental Engineering Science, 2023, 40(9): 349-361. DOI:10.1089/ees.2023.0016
    4. Lou, J., An, J., Wang, X. et al. Enhanced degradation of oxytetracycline in aqueous solution by DBD plasma-coupled vacuum ultraviolet/ultraviolet (VUV/UVC) system. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139021
    5. Fan, Y., Wang, L., Sun, X. et al. The efficient removal towards tetracycline via photocatalytic persulfate activation using the heterostructured UiO-66-NH2-CA-Cu/g-C3N4 composite. Journal of Materials Science: Materials in Electronics, 2023, 34(24): 1739. DOI:10.1007/s10854-023-11142-x
    6. Yang, Y., Shen, H., Xu, L. Three-dimensional graphene anchored nZVI hybrid MnO2 as a dissolved oxygen activated Fenton-like catalyst for efficient mineralization of oxytetracycline. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.142781
    7. Kyere-Yeboah, K., Bique, I.K., Qiao, X.-C. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.138061
    8. Li, N., Jiang, H., Liu, J. et al. Adsorption Properties of Pb2+ by Ferric Hydroxide Loaded White Rot Fungi. Journal of Physics: Conference Series, 2023, 2597(1): 012015. DOI:10.1088/1742-6596/2597/1/012015
    9. Attri, P., Koga, K., Okumura, T. et al. Treatment of organic wastewater by a combination of non-thermal plasma and catalyst: a review. Reviews of Modern Plasma Physics, 2022, 6(1): 17. DOI:10.1007/s41614-022-00077-1
    10. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    11. Wang, Q., Huang, T., Du, J. et al. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS Omega, 2022, 7(28): 24574-24586. DOI:10.1021/acsomega.2c02392
    12. He, Y., Sang, W., Lu, W. et al. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water (Switzerland), 2022, 14(9): 1351. DOI:10.3390/w14091351
    13. Yao, X., Guo, J.-S., Zhang, Y.-T. Unveiling pathways of oxytetracycline degradation induced by cold atmospheric plasma. AIP Advances, 2022, 12(3): 035046. DOI:10.1063/5.0085605
    14. Parvulescu, V.I., Epron, F., Garcia, H. et al. Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122(3): 2981-3121. DOI:10.1021/acs.chemrev.1c00527
    15. Magureanu, M., Bilea, F., Bradu, C. et al. A review on non-thermal plasma treatment of water contaminated with antibiotics. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125481
    16. Sang, W., Mei, L., Zhan, C. et al. Removal of N, N-dimethylformamide by dielectric barrier discharge plasma combine with manganese activated carbon. Environmental Science and Pollution Research, 2021, 28(31): 41698-41711. DOI:10.1007/s11356-021-13729-5
    17. Fan, J., Wu, H., Liu, R. et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environmental Science and Pollution Research, 2021, 28(3): 2522-2548. DOI:10.1007/s11356-020-11222-z
    18. Huang, H., Guo, G., Tang, S. et al. Persulfate oxidation for alternative sludge treatment and nutrient recovery: An assessment of technical and economic feasibility. Journal of Environmental Management, 2020. DOI:10.1016/j.jenvman.2020.111007
    19. Tran, M.L., Nguyen, C.H., Tran, T.T.V. et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis. Journal of the Taiwan Institute of Chemical Engineers, 2020. DOI:10.1016/j.jtice.2020.05.001
    20. Sun, W., Sun, Y., Zhu, H. et al. Catalytic activity and evaluation of Fe-Mn@Bt for ozonizing coal chemical biochemical tail water. Separation and Purification Technology, 2020. DOI:10.1016/j.seppur.2020.116524
    21. Tang, S., Tang, J., Yuan, D. et al. Elimination of humic acid in water: Comparison of UV/PDS and UV/PMS. RSC Advances, 2020, 10(30): 17627-17634. DOI:10.1039/d0ra01787f
    22. Tang, S., Wang, Z., Yuan, D. et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. International Journal of Electrochemical Science, 2020, 15(3): 2470-2480. DOI:10.20964/2020.03.09
    23. Chen, L., Sun, Y. Catalytic ozone oxidation treatment of wastewater from a pesticide enterprise. Desalination and Water Treatment, 2020. DOI:10.5004/dwt.2020.26482
    24. Li, J., Li, R., Zou, L. et al. Efficient degradation of norfloxacin and simultaneous electricity generation in a persulfate-photocatalytic fuel cell system. Catalysts, 2019, 9(10): 835. DOI:10.3390/catal9100835
    25. Li, B., Udugama, I.A., Mansouri, S.S. et al. An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 2019. DOI:10.1016/j.jclepro.2019.05.042
    26. Yao, X., Jiang, N., Peng, B. et al. DC discharge with high secondary electron emission oxide cathode: Effects of gas pressure and oxide cathode structure. Vacuum, 2019. DOI:10.1016/j.vacuum.2019.04.035
    27. Jiang, N., Qiu, C., Guo, L. et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2019.02.087
    28. Liu, J., Wang, H., Wang, L. et al. Defect-engineered cobalt-based solid catalyst for high efficiency oxidation of sulfite. Chemical Engineering Science, 2019. DOI:10.1016/j.ces.2018.12.011
    29. Chen, H., Zhang, S., Zhao, Z. et al. Application of Dopamine Functional Materials in Water Pollution Control | [多巴胺功能材料在水污染控制中的应用]. Progress in Chemistry, 2019, 31(4): 571-579. DOI:10.7536/PC180823
    30. Tang, S., Yuan, D., Rao, Y. et al. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2018.12.056
    31. Huang, H., Zhang, D., Wang, W. et al. Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the Total Environment, 2019. DOI:10.1016/j.scitotenv.2018.11.259
    32. Li, N., Tang, S., Rao, Y. et al. Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019. DOI:10.1016/j.electacta.2018.12.063
    33. Huang, H., Li, B., Li, J. et al. Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environmental Pollution, 2019. DOI:10.1016/j.envpol.2018.11.046

    Other cited types(0)

Catalog

    Article views (231) PDF downloads (318) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return