Advanced Search+
Lijuan DUAN (段丽娟), Nan JIANG (姜楠), Na LU (鲁娜), Kefeng SHANG (商克峰), Jie LI (李杰), Yan WU (吴彦). A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 54009-054009. DOI: 10.1088/2058-6272/aaab42
Citation: Lijuan DUAN (段丽娟), Nan JIANG (姜楠), Na LU (鲁娜), Kefeng SHANG (商克峰), Jie LI (李杰), Yan WU (吴彦). A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 54009-054009. DOI: 10.1088/2058-6272/aaab42

A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

Funds: The authors thank the projects funded by the Fundamental Research Funds for the Central Universities under Grant (DUT 15QY17) and National Natural Science Foundation of China (Project Nos. 51477025 and U1462105) for their financial support to this research.
More Information
  • Received Date: November 22, 2017
  • In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3,H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l-1 and 10 μS cm-1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (De) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.
  • [1]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [2]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [3]
    ShiJW,BianWJandYinXD 2009 J. Hazard. Mater. 171 924
    [4]
    Sato M, Ohgiyama T and Clements J S 1996 IEEE Trans. Ind. Appl. 32 106
    [5]
    Willberg D M et al 1996 Environ. Sci. Technol. 30 2526
    [6]
    Zhang Y et al 2013 Chem. Eng. J. 215–216 261
    [7]
    Lukes P et al 2008 Plasma Sources Sci. Technol. 17 024012
    [8]
    Sun B, Sato M and Clements J S 2000 Environ. Sci. Technol. 34 509
    [9]
    Schneider J et al 2014 Chem. Rev. 114 9919
    [10]
    Pelaez M et al 2012 Appl. Catal. B Environ. 125 331
    [11]
    Ghezzar M R et al 2007 Appl. Catal. B Environ. 72 304
    [12]
    Li J et al 2007 Desalination 212 123
    [13]
    Wang T C et al 2011 Environ. Sci. Technol. 45 9301
    [14]
    Hao X L et al 2007 J. Hazard. Mater. 141 475
    [15]
    Zhang Y et al 2013 J. Colloid Interface Sci. 409 104
    [16]
    Sugiarto A T and Sato M 2001 Thin Solid Films 386 295
    [17]
    ShenYJ,Lei LCandZhangXW2008 Chin. Sci. Bull. 53 1824
    [18]
    Jiang N et al 2016 Appl. Catal. B Environ. 184 355
    [19]
    Wang T C et al 2016 Water Res. 89 28
    [20]
    Mededovic S and Locke B R 2007 Ind. Eng. Chem. Res. 46 2702
    [21]
    Wang H J et al 2008 Appl. Catal. B Environ. 83 72
    [22]
    Magureanu M et al 2008 Plasma Chem. Plasma. Process. 28 677
    [23]
    Sugiarto A T et al 2003 J. Electrostat. 58 135
    [24]
    Su R et al 2012 ACS Nano 6 6284
    [25]
    Chen J, Eberlein L and Langford C H 2002 J. Photochem. Photobiol. A Chem. 148 183
  • Related Articles

    [1]Xiaoming ZHONG, Xiaolan ZOU, Chu ZHOU, Adi LIU, Ge ZHUANG, Xi FENG, Jin ZHANG, Jiaxu JI, Hongrui FAN, Shen LIU, Shifan WANG, Liutian GAO, Wenxiang SHI, Tao LAN, Hong LI, Jinlin XIE, Wenzhe MAO, Zixi LIU, Wandong LIU. Comparison of methods for turbulence Doppler frequency shift calculation in Doppler reflectometer[J]. Plasma Science and Technology, 2023, 25(9): 095104. DOI: 10.1088/2058-6272/acc8ba
    [2]Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2
    [3]C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8
    [4]A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c
    [5]Ting WU (吴婷), Lin NIE (聂林), Min XU (许敏), Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Yuejiang SHI (石跃江), Nengchao WANG (王能超), Da LI (李达), Rui KE (柯锐), Yi YU (余羿), Shaobo GONG (龚少博), Ting LONG (龙婷), Yihang CHEN (陈逸航), Bing LIU (刘兵), J-TEXT Team. Effect of resonant magnetic perturbation on boundary plasma turbulence and transport on J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(12): 125102. DOI: 10.1088/2058-6272/ab4369
    [6]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [7]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(10)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484
    3. Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566
    4. Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131
    5. Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949
    6. Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271
    7. Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588
    8. Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848
    9. Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744
    10. Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915

    Other cited types(0)

Catalog

    Article views (211) PDF downloads (444) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return