Advanced Search+
Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1
Citation: Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1

Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe

Funds: This study is supported by National Natural Science Foundation of China (No. 11475131).
More Information
  • Received Date: October 19, 2017
  • In this work we used a passive measurement method based on a high-impedance electrostatic probe and an optical emission spectroscope (OES) to investigate the characteristics of the double layer (DL) in an argon helicon plasma. The DL can be confirmed by a rapid change in the plasma potential along the axis. The axial potential variation of the passive measurement shows that the DL forms near a region of strong magnetic field gradient when the plasma is operated in wave-coupled mode, and the DL strength increases at higher powers in this experiment. The emission intensity of the argon atom line, which is strongly dependent on the metastable atom concentration, shows a similar spatial distribution to the plasma potential along the axis. The emission intensity of the argon atom line and the argon ion line in the DL suggests the existence of an energetic electron population upstream of the DL. The electron density upstream is much higher than that downstream, which is mainly caused by these energetic electrons.
  • [1]
    Shinohara S et al 2009 Phys. Plasmas. 16 057104
    [2]
    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [3]
    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
    [4]
    Ghosh S et al 2015 Plasma Sources Sci. Technol. 24 034011
    [5]
    Sahu B B, Ganguli A and Tarey R D 2013 Appl. Phys. Lett. 103 184105
    [6]
    Tarey R D, Sahu B B and Ganguli A 2012 Phys. Plasmas 19 073520
    [7]
    Ganguli A, Sahu B B and Tarey R D 2013 Phys. Plasmas 20 013510
    [8]
    Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14 113503
    [9]
    Blackwell D D et al 2002 Phys. Rev. Lett. 88 145002
    [10]
    Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004
    [11]
    Takahashi K, Komuro A and Ando A 2015 Plasma Sources Sci. Technol. 24 055004
    [12]
    Charles C 2007 Plasma Sources Sci. Technol. 16 R1
    [13]
    Charles C and Boswell R 2003 Appl. Phys. Lett. 82 1356
    [14]
    Ghosh S et al 2017 J. Phys. D Appl. Phys. 50 065201
    [15]
    Sahu B B, Tarey R D and Ganguli A 2014 Phys. Plasmas 21 023504
    [16]
    Ghosh S et al 2017 Phys. Plasmas 24 020703
    [17]
    Wendt A E 2001 Rev. Sci. Instrum 72 2926
    [18]
    Ganguli A, Sahu B B and Tarey R D 2008 Plasma Sources Sci. Technol. 17 015003
    [19]
    Saha S K et al 2014 Phys. Plasmas 21 043502
    [20]
    Kline J L et al 2002 Phys. Rev. Lett. 88 195002
    [21]
    Sun X et al 2005 Phys. Rev. Lett. 95 025004
    [22]
    Scime E E et al 2013 Phys. Plasmas 20 032103
    [23]
    Sudit I D and Chen F F 1996 Plasma Sources Sci. Technol. 5 43
    [24]
    Niu C et al 2017 Phys. Plasmas 24 013518
    [25]
    Lafleur T, Charles C and Boswell R W 2009 Phys. Plasmas 16 044510
    [26]
    Zhao G et al 2017 Phys. Plasmas 24 123507
    [27]
    Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion 2nd edn (New York: Springer) 292
    [28]
    Czerwiec T and Graves D B 2004 J. Phys. D Appl. Phys. 37 2827
    [29]
    Jung O R et al 2007 Phys. Rev. A 75 052707
    [30]
    Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [31]
    Sutherland O et al 2005 Phys. Rev. Lett. 95 205002
    [32]
    Vujnovi? V and Wiese W L 1992 J. Phys. Chem. Ref. Data 21 919
    [33]
    Zhang Y C, Charles C and Boswell R 2016 Phys. Rev. Lett. 116 025001
    [34]
    Zhao G et al 2014 Acta Phys. Sin. 63 235202 (in Chinese) 6
  • Related Articles

    [1]A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa
    [2]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [3]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [4]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [5]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [6]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [7]LV Linhui(吕林辉), YE Yanlin(叶沿林), CAO Zhongxin(曹中鑫), Xiao Jun(肖军), JIANG Dongxing(江栋兴), ZHENG Tao(郑涛), HUA hui(华辉), Li Zhihuan(李智焕), GE Yucheng(葛俞成), LI Xiangqing(李湘庆), LOU Jianling(楼建玲), et al. Knockout Reaction Mechanism for 6He+[J]. Plasma Science and Technology, 2012, 14(6): 506-509. DOI: 10.1088/1009-0630/14/6/15
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]CAO Zhongxin(曹中鑫), Ye Yanlin(叶沿林), Jiang Dongxing(江栋兴), ZHENG Tao(郑涛), Li Zhihuan(李智焕), HUA Hui(华辉), GE Yucheng(葛榆成), LI Xiangqing(李湘庆), LOU Jianling(楼建玲), XIAO Jun(肖军), LI Qite(李奇特), LV Linhui, et al. Recoiled Proton Tagged Knockout Reaction for 8He[J]. Plasma Science and Technology, 2012, 14(6): 460-463. DOI: 10.1088/1009-0630/14/6/05
    [10]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
  • Cited by

    Periodical cited type(14)

    1. Zhao, Y., Liu, Y., Liu, Z. et al. A 3D-printed fence-surface plasma source for skin treatment and its potential for personalized medical application. Journal of Physics D: Applied Physics, 2024, 57(12): 125207. DOI:10.1088/1361-6463/ad172d
    2. Xu, W., Lu, Y., Yue, X. et al. Influence of operating conditions on electron density in atmospheric pressure helium plasma jets. Journal of Physics D: Applied Physics, 2024, 57(4): 045201. DOI:10.1088/1361-6463/ad0479
    3. Apelqvist, J., Robson, A., Helmke, A. et al. AN EMERGING TECHNOLOGY FOR CLINICAL USE IN WOUND HEALING. Journal of Wound Management, 2024, 25(3): S1-S84. DOI:10.35279/jowm2024.25.03.sup01
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Machmud, A., Chang, M.B. Review on applying plasma and catalysis for abating the emissions of fluorinated compounds. Journal of Environmental Chemical Engineering, 2023, 11(6): 111584. DOI:10.1016/j.jece.2023.111584
    6. Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475-1488. DOI:10.1007/s11090-023-10404-0
    7. Liu, Z., Gao, Y., Pang, B. et al. Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma. Journal of Physics D: Applied Physics, 2022, 55(29): 295202. DOI:10.1088/1361-6463/ac6a8a
    8. Liu, F., Nie, L., Lu, X. On the green aurora emission of Ar atmospheric pressure plasma. Plasma Science and Technology, 2022, 24(5): 055408. DOI:10.1088/2058-6272/ac52ec
    9. Ouyang, W., Ding, C., Liu, Q. et al. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105215
    10. Pang, B., Liu, Z., Wang, S. et al. Discharge mode transition in a He/Ar atmospheric pressure plasma jet and its inactivation effect against tumor cells in vitro. Journal of Applied Physics, 2021, 130(15): 153301. DOI:10.1063/5.0063135
    11. Sharma, N.K., Misra, S., Varun, Choyal, Y. et al. Analysis of Discharge Characteristics of Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49(9): 2799-2805. DOI:10.1109/TPS.2021.3106792
    12. Sharma, N.K., Misra, S., Varun, Pal, U.N. Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Physics of Plasmas, 2020, 27(11): 113502. DOI:10.1063/5.0018901
    13. Nguyen, D.B., Trinh, Q.H., Hossain, M.M. et al. Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45(36): 18519-18532. DOI:10.1016/j.ijhydene.2019.06.167
    14. Nguyen, D.B., Trinh, Q.H., Mok, Y.S. et al. Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29(3): 035014. DOI:10.1088/1361-6595/ab6ebd

    Other cited types(0)

Catalog

    Article views (227) PDF downloads (453) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return