Advanced Search+
Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
Citation: Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014

Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies

Funds: This work was supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2014GB106005 and 2010GB106000), National Natural Science Foundation of China (Nos. 11505123 11435009 11375126), and a Project funded by China Postdoctoral Science Foundation (No. 156455).
More Information
  • Received Date: December 03, 2017
  • The high magnetic field helicon experiment system is a helicon wave plasma (HWP) source device in a high axial magnetic field ( B0 ) developed for plasma–wall interactions studies for fusion reactors. This HWP was realized at low pressure (5 × 10−3 − 10 Pa) and a RF (radio frequency, 13.56 MHz) power (maximum power of 2 kW) using an internal right helical antenna (5 cm in diameter by 18 cm long) with a maximum B 0 of 6300 G. Ar HWP with electron density ~1018–1020 m−3 and electron temperature ~4–7 eV was produced at high B0 of 5100 G, with an RF power of 1500 W. Maximum Ar+ ion flux of 7.8 × 1023 m−2 s−1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias. Plasma energy and mass spectrometer studies indicate that Ar+ ion-beams of 40.1 eV are formed, which are supersonic (~3.1c s). The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry. And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1 × 1024 N2/m2h.
  • [1]
    Winter J 1996 Plasma Phys. Controlled Fusion 38 1503
    [2]
    de la Cal E and Gauthier E 2005 Plasma Phys. Controlled Fusion 47 197
    [3]
    Poschenrieder W, Staudenmaier G and Staib P 1980 J. Nucl. Mater. 93-94 322
    [4]
    Itami K et al 2009 J. Nucl. Mater. 390-391 983
    [5]
    Itami K et al 2013 J. Nucl. Mater. 438 S930
    [6]
    Lyssoivan A et al 2011 J. Nucl. Mater. 415 S1029
    [7]
    Douai D et al 2011 J. Nucl. Mater. 415 S1021
    [8]
    Lyssoivan A et al 2005 J. Nucl. Mater. 337-339 456
    [9]
    Wauters T et al 2013 Nucl. Fusion 53 123001
    [10]
    Loewenhoff et al 2014 Phys. Scr. T159 010301
    [11]
    Counsell G et al 2006 Plasma Phys. Controlled Fusion 48 B189
    [12]
    Brakel R et al 2001 J. Nucl. Mater. 290-293 1160
    [13]
    Li J G et al 1999 Nucl. Fusion 39 973
    [14]
    Wauters T et al 2015 J. Nucl. Mater. 463 1104
    [15]
    Lyssoivan A et al 2007 J. Nucl. Mater. 363-365 1358
    [16]
    Lee D S et al 2017 Fusion Sci. Technol. 60 94
    [17]
    Gao X et al 2009 J. Nucl. Mater. 390-391 864
    [18]
    Takahashi H et al 2015 J. Nucl. Mater. 463 1100
    [19]
    Moiseenko V E et al 2014 Nucl. Fusion 54 033009
    [20]
    Blackwell B D et al 2012 Plasma Source Sci. Technol. 21 055033
    [21]
    Wright G M et al 2014 Rev. Sci. Instrum 85 023503
    [22]
    Jepu I et al 2015 J. Nucl. Mater. 463 983
    [23]
    Ohno N et al 2001 Nucl. Fusion 41 1055
    [24]
    Boswell R W 1984 Plasma Phys. Controlled Fusion 26 1147
    [25]
    Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229
    [26]
    Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245
    [27]
    Shinohara S and Mizokoshi H 2006 Rev. Sci. Instrum. 77 036108
    [28]
    Huang T Y et al 2016 Sci. China Phys. Mech Astron. 59 645201
    [29]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
    [30]
    Hopwood J 1992 Plasma Sources Sci. Technol. 1 109
    [31]
    Ellingboe A R and Boswell R W 1996 Phys. Plasmas 3 2797
    [32]
    Corr C S et al 2007 Appl. Phys. Lett. 91 241501

Catalog

    Article views (198) PDF downloads (488) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return