Advanced Search+
Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
Citation: Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014

Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies

Funds: This work was supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2014GB106005 and 2010GB106000), National Natural Science Foundation of China (Nos. 11505123 11435009 11375126), and a Project funded by China Postdoctoral Science Foundation (No. 156455).
More Information
  • Received Date: December 03, 2017
  • The high magnetic field helicon experiment system is a helicon wave plasma (HWP) source device in a high axial magnetic field ( B0 ) developed for plasma–wall interactions studies for fusion reactors. This HWP was realized at low pressure (5 × 10−3 − 10 Pa) and a RF (radio frequency, 13.56 MHz) power (maximum power of 2 kW) using an internal right helical antenna (5 cm in diameter by 18 cm long) with a maximum B 0 of 6300 G. Ar HWP with electron density ~1018–1020 m−3 and electron temperature ~4–7 eV was produced at high B0 of 5100 G, with an RF power of 1500 W. Maximum Ar+ ion flux of 7.8 × 1023 m−2 s−1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias. Plasma energy and mass spectrometer studies indicate that Ar+ ion-beams of 40.1 eV are formed, which are supersonic (~3.1c s). The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry. And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1 × 1024 N2/m2h.
  • [1]
    Winter J 1996 Plasma Phys. Controlled Fusion 38 1503
    [2]
    de la Cal E and Gauthier E 2005 Plasma Phys. Controlled Fusion 47 197
    [3]
    Poschenrieder W, Staudenmaier G and Staib P 1980 J. Nucl. Mater. 93-94 322
    [4]
    Itami K et al 2009 J. Nucl. Mater. 390-391 983
    [5]
    Itami K et al 2013 J. Nucl. Mater. 438 S930
    [6]
    Lyssoivan A et al 2011 J. Nucl. Mater. 415 S1029
    [7]
    Douai D et al 2011 J. Nucl. Mater. 415 S1021
    [8]
    Lyssoivan A et al 2005 J. Nucl. Mater. 337-339 456
    [9]
    Wauters T et al 2013 Nucl. Fusion 53 123001
    [10]
    Loewenhoff et al 2014 Phys. Scr. T159 010301
    [11]
    Counsell G et al 2006 Plasma Phys. Controlled Fusion 48 B189
    [12]
    Brakel R et al 2001 J. Nucl. Mater. 290-293 1160
    [13]
    Li J G et al 1999 Nucl. Fusion 39 973
    [14]
    Wauters T et al 2015 J. Nucl. Mater. 463 1104
    [15]
    Lyssoivan A et al 2007 J. Nucl. Mater. 363-365 1358
    [16]
    Lee D S et al 2017 Fusion Sci. Technol. 60 94
    [17]
    Gao X et al 2009 J. Nucl. Mater. 390-391 864
    [18]
    Takahashi H et al 2015 J. Nucl. Mater. 463 1100
    [19]
    Moiseenko V E et al 2014 Nucl. Fusion 54 033009
    [20]
    Blackwell B D et al 2012 Plasma Source Sci. Technol. 21 055033
    [21]
    Wright G M et al 2014 Rev. Sci. Instrum 85 023503
    [22]
    Jepu I et al 2015 J. Nucl. Mater. 463 983
    [23]
    Ohno N et al 2001 Nucl. Fusion 41 1055
    [24]
    Boswell R W 1984 Plasma Phys. Controlled Fusion 26 1147
    [25]
    Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229
    [26]
    Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245
    [27]
    Shinohara S and Mizokoshi H 2006 Rev. Sci. Instrum. 77 036108
    [28]
    Huang T Y et al 2016 Sci. China Phys. Mech Astron. 59 645201
    [29]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
    [30]
    Hopwood J 1992 Plasma Sources Sci. Technol. 1 109
    [31]
    Ellingboe A R and Boswell R W 1996 Phys. Plasmas 3 2797
    [32]
    Corr C S et al 2007 Appl. Phys. Lett. 91 241501
  • Related Articles

    [1]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [2]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [3]Safi ULLAH, Hailong LI (李海龙), Abdur RAUF, Lin MENG (蒙林), Bin WANG (王彬), Maoyan WANG (王茂琰). PMSE dependence on frequency observed simultaneously with VHF and UHF radars in the presence of precipitation[J]. Plasma Science and Technology, 2018, 20(11): 115302. DOI: 10.1088/2058-6272/aac8d4
    [4]Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a
    [5]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [6]DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12
    [7]GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13
    [8]QI Lei(齐磊), ZHANG Chunmei(张春梅), CHEN Qiang(陈强). Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells[J]. Plasma Science and Technology, 2014, 16(1): 45-49. DOI: 10.1088/1009-0630/16/1/10
    [9]HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08
    [10]WANG Rong(王荣), FENG Zhao(冯钊), LIU Yunhong(刘运宏), LU Ming(鲁明). Effects of 50 keV and 100 keV Proton Irradiation on GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Plasma Science and Technology, 2012, 14(7): 647-649. DOI: 10.1088/1009-0630/14/7/18

Catalog

    Article views (198) PDF downloads (488) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return