Advanced Search+
Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
Citation: Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369

High-power microwave propagation properties in the argon plasma array

Funds: This work is supported by the National High Technology Research and Development Program of China (Grant No. 2015AA0392).
More Information
  • Received Date: May 20, 2018
  • The argon plasma induced by the L-/C-band high-power microwave (HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the protection performance of the plasma array against HPM are studied. The results show that the effect of HPM is caused by energy accumulation, with the gas breakdown emerging only after a short time. The attenuation of the wave by the plasma array with the tubes off can reach approximately 23 dB at 1.3 GHz. It can also be obtained that the protection performance of the plasma array against the TE wave is better than that against the TM one. The plasma array shows better protection performance in the L-band than in the C-band. In addition, the attenuation of 5.6 GHz HPM can reach 30 dB when the tubes are turned on in the experiment. The research shows that the plasma array has protection ability against HPM.
  • [1]
    MacDonald A D 1996 Microwave Breakdown in Gases (New York: Wiley)
    [2]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [3]
    Yang Y M, Yuan C W and Qian B L 2012 Phys. Plasmas 19 122101
    [4]
    Boeuf J, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
    [5]
    Baeva M et al 2000 Plasma Sources Sci. Technol. 9 128
    [6]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [7]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [8]
    Starodubtsev M V 2010 Radiophys. Quantum Electron. 53 338
    [9]
    Yuan Z C and Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)
    [10]
    Li Z G et al 2017 Acta Phys. Sin. 66 195202 (in Chinese)
    [11]
    Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
    [12]
    Destler W W et al 1991 J. Appl. Phys. 69 6313
    [13]
    Singh et al 1992 J. Appl. Phys. 72 1707
    [14]
    Xu Y X et al 2013 Plasma Sources Sci. Technol. 23 015002
    [15]
    Sakai O et al 2013 Plasma Phys. Control. Fusion. 59 014042
    [16]
    Cook A et al 2011 Phys. Plasmas 18 100704
    [17]
    L?fgren M et al 1991 Phys. Fluids B 3 3528
    [18]
    Zhao P X et al 2011 Phys. Plasmas 18 10211
    [19]
    He W, Liu X H and Xian R C 2013 Plasma Sci. Technol. 15 335
    [20]
    Jordan U et al 2006 IEEE Trans. Plasma Sci. 34 421
    [21]
    Cheng L, Shi J M and Xu B 2012 Plasma Sci. Technol. 14 37
  • Cited by

    Periodical cited type(9)

    1. Song, G., Wu, J., He, S. et al. Study on Time-domain Characteristics of Waveguide Plasma Limiter. 2024. DOI:10.1109/MAPE62875.2024.10813731
    2. Liu, R., Peng, J., Lin, L. et al. Factors influencing the electromagnetic transmission of mercury vapor discharge plasma tube arrays. Physica Scripta, 2023, 98(5): 055611. DOI:10.1088/1402-4896/acc9e4
    3. Wang, L., Liao, C., Ding, D. et al. Numerical Study on Low Pressure Discharge of Microwave Stepped Impedance Transformer. 2023. DOI:10.23919/ACES-China60289.2023.10249931
    4. Liu, X., Chen, Y., Liu, J. et al. Development of the Plasma Limiter for High Power Microwave Weapon Protection. 2023. DOI:10.1109/IVEC56627.2023.10156950
    5. Wang, L., Liao, C., Yuan, R. et al. Numerical simulation of waveguide plasma limiter under high power microwave based on the SETD method. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2668440
    6. Chen, Y., Wang, L., Zhao, L. et al. Simulation study of alleviating the communication blackout using high-power microwave irradiating plasma sheaths. Physics of Plasmas, 2022, 29(12): 123505. DOI:10.1063/5.0105947
    7. Wang, L., Tang, Z., Bao, H. et al. An Electromagnetic-Plasma Fluid Model Simulation of Waveguide Plasma Limiter Filled with Different Easily Ionized Inert Gas. IEEE Transactions on Plasma Science, 2022, 50(10): 3839-3847. DOI:10.1109/TPS.2022.3205968
    8. ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688
    9. Chen, W., Li, C., Sun, A. Numerical Study on the Interaction between High-Power Microwave and Plasma. 2021. DOI:10.1109/CIEEC50170.2021.9510584

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (245) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return