Advanced Search+
Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
Citation: Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369

High-power microwave propagation properties in the argon plasma array

Funds: This work is supported by the National High Technology Research and Development Program of China (Grant No. 2015AA0392).
More Information
  • Received Date: May 20, 2018
  • The argon plasma induced by the L-/C-band high-power microwave (HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the protection performance of the plasma array against HPM are studied. The results show that the effect of HPM is caused by energy accumulation, with the gas breakdown emerging only after a short time. The attenuation of the wave by the plasma array with the tubes off can reach approximately 23 dB at 1.3 GHz. It can also be obtained that the protection performance of the plasma array against the TE wave is better than that against the TM one. The plasma array shows better protection performance in the L-band than in the C-band. In addition, the attenuation of 5.6 GHz HPM can reach 30 dB when the tubes are turned on in the experiment. The research shows that the plasma array has protection ability against HPM.
  • [1]
    MacDonald A D 1996 Microwave Breakdown in Gases (New York: Wiley)
    [2]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [3]
    Yang Y M, Yuan C W and Qian B L 2012 Phys. Plasmas 19 122101
    [4]
    Boeuf J, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
    [5]
    Baeva M et al 2000 Plasma Sources Sci. Technol. 9 128
    [6]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [7]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [8]
    Starodubtsev M V 2010 Radiophys. Quantum Electron. 53 338
    [9]
    Yuan Z C and Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)
    [10]
    Li Z G et al 2017 Acta Phys. Sin. 66 195202 (in Chinese)
    [11]
    Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
    [12]
    Destler W W et al 1991 J. Appl. Phys. 69 6313
    [13]
    Singh et al 1992 J. Appl. Phys. 72 1707
    [14]
    Xu Y X et al 2013 Plasma Sources Sci. Technol. 23 015002
    [15]
    Sakai O et al 2013 Plasma Phys. Control. Fusion. 59 014042
    [16]
    Cook A et al 2011 Phys. Plasmas 18 100704
    [17]
    L?fgren M et al 1991 Phys. Fluids B 3 3528
    [18]
    Zhao P X et al 2011 Phys. Plasmas 18 10211
    [19]
    He W, Liu X H and Xian R C 2013 Plasma Sci. Technol. 15 335
    [20]
    Jordan U et al 2006 IEEE Trans. Plasma Sci. 34 421
    [21]
    Cheng L, Shi J M and Xu B 2012 Plasma Sci. Technol. 14 37
  • Related Articles

    [1]Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688
    [2]H L SWAMI, M ABHANGI, Sanchit SHARMA, S TIWARI, A N MISTRY, V VASAVA, V MEHTA, S VALA, C DANANI, V CHAUDHARI, P CHAUDHURI. A neutronic experiment to support the design of an Indian TBM shield module for ITER[J]. Plasma Science and Technology, 2019, 21(6): 65601-065601. DOI: 10.1088/2058-6272/ab079a
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1
    [5]Qingmei XIAO (肖青梅), Zhibin WANG (王志斌), Peng E (鄂鹏), Xiaogang WANG (王晓钢), Chijie XIAO (肖池阶), Yang REN (任洋), Hantao JI (吉瀚涛), Aohua MAO (毛傲华), Liyi LI (李立毅). Development of plasma sources for Dipole Research EXperiment (DREX)[J]. Plasma Science and Technology, 2017, 19(5): 55302-055302. DOI: 10.1088/2058-6272/aa6539
    [6]Qingmei XIAO (肖青梅), Zhibin WANG (王志斌), Xiaogang WANG (王晓钢), Chijie XIAO (肖池阶), Xiaoyi YANG (杨肖易), Jinxing ZHENG (郑金星). Conceptual design of Dipole Research Experiment (DREX)[J]. Plasma Science and Technology, 2017, 19(3): 35301-035301. DOI: 10.1088/2058-6272/19/3/035301
    [7]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [8]You Haibo(游海波)), Song Yushou(宋玉收)), Xiao Jun(肖军)), Ye Yanlin(叶沿林)). Study of Neutron Cross Talk Rejection Based on Testing Experiment and Simulation[J]. Plasma Science and Technology, 2012, 14(6): 473-477. DOI: 10.1088/1009-0630/14/6/08
    [9]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(9)

    1. Song, G., Wu, J., He, S. et al. Study on Time-domain Characteristics of Waveguide Plasma Limiter. 2024. DOI:10.1109/MAPE62875.2024.10813731
    2. Liu, R., Peng, J., Lin, L. et al. Factors influencing the electromagnetic transmission of mercury vapor discharge plasma tube arrays. Physica Scripta, 2023, 98(5): 055611. DOI:10.1088/1402-4896/acc9e4
    3. Wang, L., Liao, C., Ding, D. et al. Numerical Study on Low Pressure Discharge of Microwave Stepped Impedance Transformer. 2023. DOI:10.23919/ACES-China60289.2023.10249931
    4. Liu, X., Chen, Y., Liu, J. et al. Development of the Plasma Limiter for High Power Microwave Weapon Protection. 2023. DOI:10.1109/IVEC56627.2023.10156950
    5. Wang, L., Liao, C., Yuan, R. et al. Numerical simulation of waveguide plasma limiter under high power microwave based on the SETD method. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2668440
    6. Chen, Y., Wang, L., Zhao, L. et al. Simulation study of alleviating the communication blackout using high-power microwave irradiating plasma sheaths. Physics of Plasmas, 2022, 29(12): 123505. DOI:10.1063/5.0105947
    7. Wang, L., Tang, Z., Bao, H. et al. An Electromagnetic-Plasma Fluid Model Simulation of Waveguide Plasma Limiter Filled with Different Easily Ionized Inert Gas. IEEE Transactions on Plasma Science, 2022, 50(10): 3839-3847. DOI:10.1109/TPS.2022.3205968
    8. ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688
    9. Chen, W., Li, C., Sun, A. Numerical Study on the Interaction between High-Power Microwave and Plasma. 2021. DOI:10.1109/CIEEC50170.2021.9510584

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (245) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return