Citation: | Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369 |
[1] |
MacDonald A D 1996 Microwave Breakdown in Gases (New York: Wiley)
|
[2] |
Hidaka Y et al 2009 Phys. Plasmas 16 055702
|
[3] |
Yang Y M, Yuan C W and Qian B L 2012 Phys. Plasmas 19 122101
|
[4] |
Boeuf J, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
|
[5] |
Baeva M et al 2000 Plasma Sources Sci. Technol. 9 128
|
[6] |
Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
|
[7] |
Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
|
[8] |
Starodubtsev M V 2010 Radiophys. Quantum Electron. 53 338
|
[9] |
Yuan Z C and Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)
|
[10] |
Li Z G et al 2017 Acta Phys. Sin. 66 195202 (in Chinese)
|
[11] |
Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
|
[12] |
Destler W W et al 1991 J. Appl. Phys. 69 6313
|
[13] |
Singh et al 1992 J. Appl. Phys. 72 1707
|
[14] |
Xu Y X et al 2013 Plasma Sources Sci. Technol. 23 015002
|
[15] |
Sakai O et al 2013 Plasma Phys. Control. Fusion. 59 014042
|
[16] |
Cook A et al 2011 Phys. Plasmas 18 100704
|
[17] |
L?fgren M et al 1991 Phys. Fluids B 3 3528
|
[18] |
Zhao P X et al 2011 Phys. Plasmas 18 10211
|
[19] |
He W, Liu X H and Xian R C 2013 Plasma Sci. Technol. 15 335
|
[20] |
Jordan U et al 2006 IEEE Trans. Plasma Sci. 34 421
|
[21] |
Cheng L, Shi J M and Xu B 2012 Plasma Sci. Technol. 14 37
|
1. | Song, G., Wu, J., He, S. et al. Study on Time-domain Characteristics of Waveguide Plasma Limiter. 2024. DOI:10.1109/MAPE62875.2024.10813731 |
2. | Liu, R., Peng, J., Lin, L. et al. Factors influencing the electromagnetic transmission of mercury vapor discharge plasma tube arrays. Physica Scripta, 2023, 98(5): 055611. DOI:10.1088/1402-4896/acc9e4 |
3. | Wang, L., Liao, C., Ding, D. et al. Numerical Study on Low Pressure Discharge of Microwave Stepped Impedance Transformer. 2023. DOI:10.23919/ACES-China60289.2023.10249931 |
4. | Liu, X., Chen, Y., Liu, J. et al. Development of the Plasma Limiter for High Power Microwave Weapon Protection. 2023. DOI:10.1109/IVEC56627.2023.10156950 |
5. | Wang, L., Liao, C., Yuan, R. et al. Numerical simulation of waveguide plasma limiter under high power microwave based on the SETD method. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2668440 |
6. | Chen, Y., Wang, L., Zhao, L. et al. Simulation study of alleviating the communication blackout using high-power microwave irradiating plasma sheaths. Physics of Plasmas, 2022, 29(12): 123505. DOI:10.1063/5.0105947 |
7. | Wang, L., Tang, Z., Bao, H. et al. An Electromagnetic-Plasma Fluid Model Simulation of Waveguide Plasma Limiter Filled with Different Easily Ionized Inert Gas. IEEE Transactions on Plasma Science, 2022, 50(10): 3839-3847. DOI:10.1109/TPS.2022.3205968 |
8. | ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688 |
9. | Chen, W., Li, C., Sun, A. Numerical Study on the Interaction between High-Power Microwave and Plasma. 2021. DOI:10.1109/CIEEC50170.2021.9510584 |